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Abstract

I explore how the cyclicality of firms’ output affects their debt capacity. I point out

that, in contrast to received theory, procyclical firms can have an advantage in the fund-

ing market. Because they have more assets in booms, when asset prices are high ex

post, they have looser collateral constraints ex ante—assets are useful as collateral only

when they are valuable. This advantage is present across diverse models of borrowing

constraints, and can be a first-order determinant of debt capacity. In dynamic general

equilibrium, debt capacity goes up in booms, improving capital allocation and gener-

ating fluctuations in firm-level and aggregate variables consistent with stylized facts,

even absent technology shocks. Further, “procyclical assets” are priced at a premium.
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1 Introduction

What determines a firm’s debt capacity? Received theory suggests that one thing that

matters is the cyclicality of its output. The argument goes that you should be reluctant to

lend to a firm that has procyclical output, which is high in booms and low in recessions,

since its repayments are low exactly when they are most valuable: in recessions, when cash

is scarce (e.g., Shleifer and Vishny (1992)). However, the empirical evidence on this idea is

mixed. In fact, some empirical papers find that, to the contrary, firms borrow more when

they have more procyclical output.1 Why?

In this paper, I identify a theoretical mechanism that gives a new perspective on how

cyclicality affects debt capacity, and explains why firms with relatively procyclical output

may sometimes borrow more. I derive a robust decomposition that splits a firm’s debt

capacity into a cost of procyclicality, which captures the received theory, and a benefit,

which captures my new observation in this paper: in the presence of collateral constraints

and related frictions, procyclical firms can credibly promise to repay more on average. The

reason is that assets are useful as collateral only if you have them when they are valuable, and

procyclical firms have more assets in booms, exactly when their prices are high. This benefit

can matter as much as the cost in standard benchmark environments. Further, it gives

rise to fluctuations in firm-level and aggregate variables consistent with stylized facts, even

in an environment in which there is no time-series variation whatsoever in the frictionless

benchmark: since debt capacity is procyclical, capital is better allocated in booms, and

leverage, output, productivity, and prices are procyclical too. The mechanism also leads to

an endogenous price premium on “procyclical assets,” a result that could cast light on the

cross-section of securities prices.

Debt capacity decomposition. In the first part of the paper, I study how the cycli-

1For example, whereas Schwert and Strubalaev (2014) find evidence in support of the received view,
Campbell, Polk, and Vuolteenaho (2010) and Ellahie (2017) find evidence to the contrary. Maia (2010) finds
different results for different notions of cyclicality, in line with my theoretical results (see Section 3).
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cality of a firm’s output affects the amount of capital it can raise, i.e. its debt capacity. I

address this question in the context of several standard models of corporate finance frictions.

Most of these models do not speak to it directly, since they do not take into account how a

firm’s output varies with the aggregate state of the economy. As such, they rule out a role

for cyclicality. To rule it back in, I allow for cyclical variation in investors’ marginal utility,

captured by a stochastic discount factor M , and in the value of the firm’s assets, captured

by their price p. I incorporate M and p into models based on collateral constraints as in

Kiyotaki and Moore (1997) and on asset substitution as in Holmström and Tirole (1997).

I find that these different models give rise to similar conclusions about how cyclicality

affects debt capacity. In fact, I derive a decomposition that holds robustly across them. It

shows that the effect of cyclicality on debt capacity can be divided into two terms. The

first term says that a firm can borrow more if its output covaries positively with the SDF.

Intuitively, you want to lend to a firm that makes repayments in recessions, when they

are most valuable, in line with received theory. I refer to this as the discount rate term.

The second term is my new observation. It says that a firm can borrow more if its output

covaries positively with asset prices. Intuitively, you want to lend to a firm that can back

its repayments by assets that can be sold/liquidated at high prices ex post, namely a firm

that has assets in booms, when their prices are high. This suggests, in contrast to received

theory, that there is a benefit to procyclicality: it can loosen financial constraints ex ante. I

refer to this as the procyclical promises term—you are willing to lend to a procyclical firm

because it can credibly promise to make high repayments on average.

This benefit of procyclicality could give a new perspective on an important empirical phe-

nomenon: firms with financial constraints do less hedging than those without (see Rampini,

Sufi and Viswanathan (2014) and Stulz (1996)). Hedging and financial constraints are two

sides of the procyclical promises term: hedging, almost by definition, makes firms less pro-

cyclical; this decreases the procyclical promises term, which can tighten financial constraints.

Thus, some firms with financial constraints should avoid hedging, exactly to loosen these
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constraints.

Procyclical promises vs. discount rates. In the second part of the paper, I analyze

the relative importance of the discount rate and procyclical promises terms. To do so, I

consider a standard neoclassical economy in which I can calculate the SDF M and asset

prices p explicitly. I show that the procyclical promises term can be just as important as the

discount rate term. Indeed, with log utility and a single capital asset, the two terms cancel

out, so procyclical firms can borrow just as much as acyclical firms (all else equal). I also

consider a model with multiple capital assets and show that the procyclical promises term

can actually dominate the discount rate term for some firms.

The additional structure in this part also allows me to compare my theoretical findings

on the cross-section of debt capacity with empirical results in the literature. In particular,

I argue that my discount rate and procyclical promises terms are related to two notions

of cyclicality introduced in Campbell and Vuolteenaho (2004), called the discount rate and

cash flow betas. Thus, my results are consistent with the empirical finding that leverage is

decreasing in the discount rate beta but increasing in the cash flow beta (see Maia (2010) as

well as Campbell, Polk, and Vuolteenaho (2010) and Ellahie (2017)). More generally, they

rationalize why the effect of cyclicality on leverage is ambiguous empirically, seeming to be

sensitive to how cyclicality is defined.

Procyclical promises in equilibrium. In the third part of the paper, I analyze the

effects of procyclical promises for the aggregate economy. Here, I no longer stress the trade-

off between my procyclical promises term and the standard discount rate term. Rather, I

zero in on the procyclical promises term by assuming that the discount rate term is zero

(i.e. investors are risk-neutral). Unlike in the previous part, in which I ask how a firm’s

cyclicality affects its borrowing constraints taking aggregate outcomes as given, here I ask

how these borrowing constraints affect aggregate outcomes themselves. To this end, I present

a dynamic equilibrium model in which there are two types of firms (or “entrepreneurs”),

one of which is more procyclical than the other. To understand how this difference in
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cyclicality affects asset prices, I assume that entrepreneurs make investments using different

capital assets. Even though there is a lot of heterogeneity—heterogenous entrepreneurs

lever up to invest in heterogeneous assets subject to heterogenous borrowing constraints—I

manage to keep the model tractable by assuming that overlapping generations of short-lived

entrepreneurs borrow from long-lived investors. Indeed, it admits an explicit solution in

some configurations.

Due to the procyclical promises channel, the model generates macroeconomic fluctuations

that resonate with empirical evidence, even though it includes a minimal amount of variation

in exogenous variables. Indeed, I set it up so that there is next to nothing going on in

the Arrow–Debreu benchmark. I assume that there is no capital accumulation and there

are no technology shocks, so output, productivity, and asset prices are all constant in the

Arrow–Debreu allocation. But I show that this is far from the case in the model with

borrowing constraints. With the discount rate term switched off, the procyclical promises

term is the key determinant of debt capacity: the more procyclical a firm is, the more

it can lever up and the more it can invest. As a result, expected output is high when

procyclical firms have more initial capital—they lever it up to invest efficiently. In contrast

to the Arrow–Debreu benchmark, aggregate prices, productivity, and output vary over time.

In other words, there are aggregate fluctuations, even absent technology shocks. These

are pure “allocation cycles”—they are driven entirely by fluctuations in who has capital.

This is in line with the empirical fact that capital allocation is a major driver of output

(Hsieh and Klenow (2009)), and the results are also consistent with evidence on the dynamics

of aggregate capital allocation, output, and productivity (see, e.g., Basu and Fernald (2001)

and Eisfeldt and Rampini (2006)).

The procyclicality of aggregate asset allocation is entirely the result of the procyclical-

ity of individual firms’ debt capacity, something consistent with evidence on constrained

firms’ procyclical leverage in Begenau and Salomao (2014), Korajczyk and Levy (2003), and

Korteweg and Strebulaev (2015).
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The model also generates endogenous variation in the cross-section of asset prices: pro-

cyclical firms’ high demand drives up the price of the assets they use in production, gener-

ating a collateral premium on these “procyclical assets.” This premium reflects the procycli-

cal promises term, which says that making procyclical investments helps you to borrow—

procyclical assets are good collateral. In an extension, I suggest that this may also affect the

prices of financial assets, helping to explain why stocks with high CAPM beta do not trade

at as much of a discount as theory suggests they should (Fama and French (2004)).

Contribution to the literature. Overall, my results suggest that the procyclical

promises channel could help us to understand corporate leverage and asset prices in the

cross-section and capital allocation and output fluctuations in the time series. Identifying

this channel and its implications is the main contribution of this paper. Although the in-

tuition behind the procyclical promises channel is simple, it is new to the literature (to my

knowledge). In fact, relatively few papers explore how cyclicality affects firms’ borrowing

capacity at all, a fact that might be surprising given the textbook importance of cyclicality

(e.g., CAPM beta) for firms’ borrowing costs (see, e.g., Brealey, Myers, and Allen (2014)).

One paper that does is Shleifer and Vishny (1992). Indeed, it identifies a version of the

discount rate channel,2 concluding that “even holding cash flow volatility constant, cycli-

cal...assets have a lower optimal level of debt finance” (p. 1364). Like Shleifer and Vishny

(1992), I focus on how asset liquidation values determine debt capacity in general equilib-

rium. But, unlike them, I allow firms to renegotiate their debt (or, equivalently, to borrow

via state-contingent contracts subject to ex post collateral constraints). And I find that asset

values matter not only when cash flows are low, and asset liquidation occurs, but also when

cash flows are higher, and asset liquidation serves as the threat point in renegotiation (cf.

Appendix B). Hence, I argue that the discount rate channel may not be the whole story. The

procyclical promises channel, by which high asset prices in high-cash flow states mitigate ex

post opportunism (e.g., renegotiation), could matter as well.

2Two other papers that study versions of the discount rate channel are Choi (2013), which connects it
with the value premium, and Ross (1985), which connects it to carried forward tax deductions.
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By connecting the procyclical promises channel with the macroeconomy, I also contribute

to the large literature on macro with financial frictions.3 Although many papers in this

literature speak to how leverage changes over the cycle, they are largely silent on how leverage

varies in the cross-section of firms with different sensitivities to the cycle.4

2 Debt Capacity Decomposition

I start by asking how the cyclicality of a firm’s output affects its debt capacity.5 Most

standard corporate finance models do not speak to this question directly, since they do not

model how output varies with the aggregate state of the economy; hence, they abstract from

cyclicality.6 As such, they switch off two important things: (i) how much consumption goods

are worth in terms of utility and (ii) how much assets are worth in terms of consumption

goods. I switch these back on. To capture (i), I include a stochastic discount factor M and, to

capture (ii), I include the price of assets p. I embed M and p in models based on two different

corporate finance frictions, collateral constraints and asset substitution/moral hazard. It

turns out that the different frictions lead to the same conclusion: a firm with output y has

debt capacity given by a simple formula, DC = E [Mpy] (up to an affine transformation).

This expression does speak to the effects of cyclicality on debt capacity, since it depends on

how the firm’s output y varies with the aggregate variables M and p. However, at this point,

the effects are confounded in the product Mpy; M is countercyclical—marginal utility is

high in recessions—whereas p is procyclical—asset prices are high in booms. Below, I derive

3Some important related papers in this literature are Alvarez and Jermann (2000), Bernanke and Gertler
(1989), Geanakoplos (1997), Geanakoplos and Kübler (2004), Kehoe and Levine (1993), Kiyotaki and Moore
(1997), and Lorenzoni (2008).

4See, e.g., Chen (2010), Gomes and Schmid (2018), Hackbarth, Miao, and Morellec (2006) for models
of firm financing over the cycle. Closer to me, Bhamra, Kuehn, and Strebulaev (2010a, 2010b) study a
model that allows for heterogenous cyclicality; I go a step further by connecting cyclicality with endogenous
financial constraints.

5In the models below, a firm can borrow as much with (renegotiable) debt as with any other contract.
Hence, I use the terms “debt capacity” and “financing capacity” interchangeably.

6Macroeconomic models with financial frictions typically do model how output varies with the aggregate
state. But, as touched on in footnote 4, only a few include heterogenous firms with different degrees of
cyclicality.
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a decomposition to disentangle these effects. But first I derive the primitive expression

DC = E [Mpy] in environments with collateral constraints, asset substitution/moral hazard,

and a combination of the two.

2.1 Collateral constraints. Consider the financing friction in Kiyotaki and Moore’s

(1997) model: repayments are limited by the value of collateral a firm has:

repayment ≤ value of its collateral (1)

(cf. p. 217 of their paper).7 Thus, if firm has a quantity y of collateral assets with price p,

it repays at most py. The present value of the maximum the firm can repay in the future

is the maximum it can borrow today, i.e. its debt capacity. Indeed, computing the present

value of the maximum repayment py gives the desired formula:

Lemma 1. In the environment with collateral constraints described above, the formula DC =

E [Mpy] holds, where y is the quantity of collateral the firm has and p is its price.

Note, however, that the formula has little bite in Kiyotaki and Moore’s specific model, be-

cause firms do not produce collateral assets (they only use them to produce consumption

goods). In other words, y is constant in their model. As a result, y factors out of the formula

for debt capacity:

DC = E [Mpy] = E [Mp] y. (2)

Here, debt capacity does not depend on how the output y co-moves with the aggregate

variables M and p, since fixing the amount of collateral a firm has rules out a role for

cyclicality. However, just allowing firms to get more collateral in the course of production

can rule it back in—if both the price and quantity of collateral can change, then it matters

how they move together. This is the case that I focus on, which seems relevant empirically.8

7See, e.g., Benmelech and Bergman (2009) and Rampini and Viswanathan (2013) for empirical evidence
on collateral values as a determinant of debt capacity.

8For example, Acharya, Bharath, and Srinivasan (2007) and Almeida and Philippon (2007) find variation
in the proportion of assets creditors recover in bankruptcy, which is effectively variation in the amount of
collateral firms have.
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(Kiyotaki and Moore also assume everyone is risk neutral, so the SDF is constant: M ≡

1/Rf . I do this too in my general equilibrium analysis in Section 4 below.)

2.2 Asset substitution/Moral hazard. Now consider the friction in Holmström and

Tirole’s (1997) model: repayments are limited because the firm (or its manager) must have

incentive to continue its investment rather than do “asset substitution” (or, equivalently, just

have incentive to work to complete its investment rather than shirk and abandon it).

Consider a firm with outstanding debt with face value T and an investment that can

succeed or fail. If it succeeds, it pays off a quantity y of an asset with price p. If it fails,

it pays off zero. As in Holmström and Tirole (1997), the probability of success depends on

whether the firm takes the (non-contractable) asset substitution action. The firm can take

a “good” action, denoted by e = 1, in which case the probability of success is π1. Or it can

take a “bad” action, denoted by e = 0, in which case the probability of success is π0. The

bad action reduces the success probability, i.e. π0 < π1, but delivers private benefits B to

the firm/manager. I assume that the probability of success depends only on e (not on the

aggregate state) and that the probability of success given e = 0 is small (so e = 1 must be

incentive compatible).

We can calculate that the firm has the incentive to take the good action only if the

repayment T is not too large: the IC e = 1 � e = 0 says

PV
[

value of output − repayment
∣

∣

∣
e = 1

]

≥ PV
[

B + value of output − repayment
∣

∣

∣
e = 0

]

,

(3)
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which can be rewritten9 as

T ≤ RfE [Mpy]−
B

π1 − π0
. (4)

Intuitively, “shirking” (e = 0) gives private benefits by definition; in contrast, “working”

(e = 1) gives shared benefits, since it increases both output and repayments. The higher

T is, the more of these benefits of working go to increasing the expected repayment, which

goes up by (π1 − π0)T . Hence, high T makes it more temping to shirk and get the private

benefits. This leads to the upper bound on T above. The debt capacity formula follows from

taking the present value of this expression.

Lemma 2. In the environment with asset substitution described above, the formula DC =

α0 + α1E [Mpy] holds for constants α0 = − π1B
Rf (π1−π0)

and α1 = π1, where y is the quantity of

output produced and p is its price.

2.3 Collateral and asset substitution. Now consider a combination of the frictions

above, which is somewhat similar to Hart and Moore (1989/1998): repayments are limited

both because a firm must back debt with collateral and because it must have incentive to

continue its investment, rather than abandon it or “divert capital.”

Consider a firm that has an investment k of a capital asset that can both serve as

collateral and produce output y. Here, I assume that the distribution of output y is binary:

the investment either succeeds, in which case y = Ak, or fails, in which case y = 0. And I

assume the firm privately observes whether the investment will succeed at an interim date,

before it pays off.10 At this point, the firm can either continue the investment, denoted by

9Symbolically, the IC in equation (3) reads

E
[

M 1succ

(

py − T
)

∣

∣

∣
e = 1

]

≥ E
[

M
(

B + 1succ

(

py − T
)

)
∣

∣

∣
e = 0

]

,

where 1succ denotes the success indicator. Now, given that I have assumed that 1succ is independent of
everything but e, we can apply the Law of Iterated Expectations to write

E
[

M π1

(

py − T
)]

≥ E
[

M
(

B + π0

(

py − T
)

)]

.

Rearranging gives equation (4) in the text.
10 For simplicity, I assume that the firm observes success or failure perfectly. However, for the qualitative
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e = 1, or abandon it, denoted by e = 0. Choosing e = 0 yields B to the firm, but decreases

the value of the capital assets by δ. Thus, “abandonment” is a catchall for any action

that delivers private benefits at the expense of asset value, of which numerous examples

are standard in the literature, e.g., asset substitution, capital diversion, shirking, tunneling,

under-maintenance, and asset stripping.

Now it is easy to see that the firm continues a successful investment but abandons a failing

investment (as long as the productivity A is not too small and the rate of depreciation δ is

not too large; see Appendix B for details). Denoting the price of capital assets by p and the

success indicator by 1succ, we have that the firm’s maximum repayment is

Tmax =



















pk given success,

(1− δ)pk given failure

(5)

= 1succ pk + (1− 1succ)(1− δ)pk (6)

= (1− δ)pk +
δpy

A
, (7)

since y ∈ {0, Ak} implies that y = 1succAk. The debt capacity formula follows from taking

the present value of this expression.

Lemma 3. In the environment with collateral constraints and asset substitution described

above, the formula DC = α0 + α1E [Mpy] holds for constants α0 = (1 − δ)E [Mp] k and

α1 = δ/A, where k is the quantity of collateral, p is its price, δ is the rate of depreciation

(or the fraction of assets that can be diverted), and y is the output of the consumption good.

This set-up will be useful below, since it can fit into the dynamic general equilibrium

framework in Section 4 relatively easily. There, the set-up remains tractable despite its

heterogenous firms with heterogenous financial constraints. One reason is that, since the

results it suffices that it gets some information about the likelihood of success. In the context of sales, this
could come from observing market demand for a product; in the context of manufacturing, it could come
from observing the efficiency of the machinery and workforce.
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firm does not produce the collateral asset here, I can find assumptions such that the total

capital stock remains constant. (Specifically, I assume that the private benefits B constitute

diverted capital: the firm can divert B = δk, leaving (1− δ)k as collateral; cf. footnote 21.)

2.4 Decomposition. What does the expression DC = E [Mpy] have to say about the

effect of cyclicality on debt capacity? To address this question, I decompose the expectation:

Proposition 1.

E [Mpy] =
1

Rf

fp E [y] + E [ p ] Cov [M, y] +
1

Rf

Cov [ p, y] + ǫ, (8)

where Rf is the risk-free rate, fp is the forward price of assets (= RfE [Mp]), and

ǫ = Cov
[(

M − E [M ]
)(

p− E [ p ]
)

, y
]

. (9)

Cyclicality is captured by the aggregate variables M and p: M is high in recessions when

marginal utility is high (since consumption is low); p is high in booms when the demand

for capital assets is high (since productivity is high).11 Thus, the first term 1
Rf

E [ y ] fp in

Proposition 1, in which y decouples, does not depend on the cyclicality of y.12 But the two

covariance terms, E [ p ] Cov [M, y] and 1
Rf

Cov [ p, y], do. (I abstract from the “nuisance term”

ǫ for now and show in Lemma 5 below that it is likely to be small anyway.)

I call E [ p ] Cov [M, y] the “discount rate term.” It reflects the standard cost of procycli-

cality: a procyclical firm has low output in recessions, and hence it can repay little when M

is high.13

I call 1
Rf

Cov [ p, y] the “procyclical promises term.” It reflects the benefit of procyclicality

that I emphasize in this paper: a procyclical firm has high output in booms, when prices are

11Empirical evidence that the values of collateral are procyclical is in Acharya, Bharath, and Srinivasan
(2007).

12Indeed, in the benchmark in which collateral constraints do not depend on output, the debt capacity
formula comprises only this term (equation (2)).

13This effect is ubiquitous in asset pricing—it is what the CAPM is all about. For corporate finance
applications, see, e.g., Almeida and Philippon (2007).
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high, and hence it repays more on average. In the models above, this is because a procyclical

firm produces collateral/continues its investments exactly when assets are most valuable.

I.e. high output and high prices are complementary, because the expected (undiscounted)

repayment is high when p and y move together.14

3 Procyclical Promises vs. Discount Rates

The analysis above suggests that the effect of cyclicality on debt capacity involves a trade-

off between the discount rate term and the procyclical promises term. Below, I explore

how important each term is likely to be. To do this, I embed a “small” constrained firm

in larger economies in which I can calculate these terms explicitly. I start with the natural

baseline of a neoclassical economy with log utility and a single capital asset. There, the

two terms both move as a function of the same aggregate variable, productivity. Hence, I

move on to a richer specification with many capital assets, in which the discount rate term

still depends on aggregate productivity, but the procyclical promises term depends on the

productivity of the assets a firm uses. Overall, I find that the procyclical promises term is

just as important as the discount rate term, and even more important for some firms in the

many-asset specification. Along the way, I use this section’s additional structure to show

formally that the “nuisance term” ǫ in the debt capacity decomposition is typically close to

zero (Lemma 5).

3.1 A single capital asset. Here, I consider a neoclassical economy with a single

durable capital asset that serves as the sole input of production. I assume that there is

14To see this another way, use the standard covariance formula to write E [ py] = E [p]E [y] + Cov [p, y].
Indeed, this is basically the decomposition in Proposition 1 for the special case of a constant SDF: if M ≡
1/Rf ,

E [Mpy] =
1

Rf

E [py]

=
1

Rf

E [p] E [ y] +
1

R f
Cov [p, y] .
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a representative firm that produces a perishable consumption good and a representative

consumer who consumes it. To capture the changing state of the economy, I assume that

there is a random shock to the firm’s productivity At: high At represents a boom and low

At a recession. And to understand how cyclicality affects debt capacity, I introduce a small

constrained firm and I ask whether it can borrow more if its output moves with At or against

it. I want to address this question directly with the debt capacity formula (DC = E [Mpy]).

To do so, I put some structure on the representative firm’s production technology and the

consumer’s utility. That way, I can calculate the asset price p and the SDF M explicitly.

I assume the firm has a technology that uses Kt at date t to produce At+1F (Kt) at date

t + 1. (It produces only the consumption good, so the capital stock is constant, Kt ≡ K.)

As usual, the rental price of capital is given by its (discounted) marginal productivity,15

Et [At+1F
′(K)] /Rf .

I assume that the consumer has log utility16 and discounts the future at rate 1/Rf . Since

the consumption good is perishable, he consumes all the output, Ct = Yt. These assumptions

allow me to compute the SDF, which is his marginal rate of substitution,

Mt,t+1 =
u′(Ct+1)

Rf u′(Ct)
=

Yt

RfYt+1

. (10)

To solve for the asset prices and the SDF explicitly, I suppose that productivity is constant

except for a (rationally anticipated) one-off shock at some date t∗+1. As I show in the proof of

Lemma 4 below, this makes it easy to solve for asset prices and the SDF. Just the perpetuity

formula and the expression in equation (10) imply that the price of assets is proportional

15The firm’s problem is to maximize its expected discounted profit:

maximize E

[

At+1F (Kt)

Rf

−Rk,tKt

]

,

where Rk,t is the rental price of capital. The FOC gives the equation in the text. Cf., e.g., Ch. 2 of
Acemoglu’s (2009) textbook.

16As I elaborate on in Appendix C, log utility is a suitable benchmark for this exercise: it has precedent
in the literature, it delivers a simple expression for M , and it allows me to “quantify” the trade-off between
the discount rate and procyclical promises terms without putting a lot of structure on the model—I can use
a general Taylor approximation without relying on specific parameter values (Lemma 4).
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to the productivity and the SDF is inversely proportional to it: p = pt∗+1 = a0At∗+1 and

M = Mt∗,t∗+1 = a1/At∗+1, for constants a0 and a1.

Now, with p and M in hand, I turn to a small constrained firm that makes an invest-

ment at date t∗ and produces output y at the next date. Is its debt capacity higher if it is

procyclical—y and At∗+1 are positively correlated—or acyclical—y and At∗+1 are uncorre-

lated? The debt capacity formula DC = E [Mpy] is designed to answer this question. Here,

it says that the debt capacity does not depend on cyclicality at all, since Mp is constant

(Mp ≡ a0a1):

Lemma 4. In the neoclassical economy with log utility and a single capital asset described

above, we have that

DC ≡ E [Mpy] = a0a1E [y] , (11)

where

a0 =
F ′(K)

Rf − 1
and a1 =

Yt∗

RfF (K)
. (12)

I.e. DC does not depend on the cyclicality of output y.

Recall that the decomposition in Proposition 1 points to two offsetting effects of procyclical-

ity. On the one hand, the SDF goes down as productivity goes up—higher productivity yields

higher output and consumption, hence lower marginal utility. But, on the other hand, the

price of capital goes up as productivity goes up—higher productivity means more valuable

capital, hence higher prices. The result above implies that these effects cancel out perfectly

in the set-up with log utility and permanent shocks.

This set-up also allows me to calculate the nuisance term ǫ explicitly and show that it

is almost zero. We are not losing anything by focusing mainly on the discount rate and the

procyclical promises terms in the decomposition:

Lemma 5. In the neoclassical economy with log utility and a single capital asset described
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above, we have that

DC ≈
1

Rf

fp E [y] + E [ p] Cov [M, y] +
1

Rf

Cov [ p, y] . (13)

I.e., in Proposition 1, ǫ ≈ 0.

This set-up is also useful because it allows me to relate my decomposition to the beta

decomposition in Campbell and Vuolteenaho (2004), which splits a firm’s CAMP beta up into

two betas, one reflecting its sensitivity to aggregate discount rates and another to aggregate

cash flows. Here, aggregate discount rates are, of course, represented by M . Hence, my

discount rate term Cov [M, y] captures the sensitivity to discount rates. Here, aggregate

cash flows are represented by the total output Yt+1. Now, given a single shock, aggregate

capital prices p are directly proportional to aggregate cash flows, as discussed above. Hence,

my procyclical promises term Cov [p, y] captures the sensitivity to aggregate cash flows.

With this interpretation,17 my model says that firms with higher discount rate betas should

have lower debt capacity, whereas firms with higher cash flow betas should have higher debt

capacity. Hence, I offer an explanation for the empirical finding that corporate leverage is

decreasing in discount rate beta, but increasing in cash flow beta (see Maia (2010) as well as

Campbell, Polk, and Vuolteenaho (2010), Ellahie (2017)). That said, my results are about

constraints on leverage (debt capacity), whereas these empirical findings are about leverage

itself. However, the fact that my model reproduces these patterns suggests that they are

likely to be driven by constrained firms.

3.2 Many capital assets. In Appendix C, I consider a set-up in which everything is

as above, except there is a large number of capital assets, indexed by i ∈ {1, ..., I}. I return

17To qualify: this decomposition is somewhat limited by my assumption that the constrained firm produces
a single bullet cash flow, instead of a stream of cash flows in the future: there is no difference between the
firm’s cash flows and its total value. This prevents me from decomposing the firm’s return into cash flow
and discount rate components, and looking at their respective betas, as Campbell and Mei (1993) do. Thus,
although, in general, there is a two-by-two matrix of betas, given the decompositions of both the firm’s and
the market’s returns into cash flow and discount rate components, my model is too coarse to capture both
its rows and columns (see Campbell, Polk, and Vuolteenaho (2010), p. 10).
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to a small firm that makes a one-period investment at date t∗, denoting the capital asset

it uses by i∗. Then I ask: can its debt capacity be increasing in its cyclicality? I find that

the answer is yes, if the asset i∗ that the firm uses is sufficiently volatile (Lemma 10). This

says that if the price of a firm’s assets moves around a lot—so the covariance between its

output y and the price pi
∗

of the asset it uses is high—then the procyclical promises term

can dominate the discount rate term. The reason is that it is not the covariance with the

aggregate price index that matters, but the covariance with the price of the specific capital

asset used in production.

4 Procyclical Promises in Equilibrium

So far, I have stressed the trade-off between my procyclical promises term and the standard

discount rate term. Now, I zero in on the procyclical promises term by assuming that the

discount rate term is zero (i.e. investors are risk-neutral). Unlike in the previous section, in

which I ask how a firm’s cyclicality affects its borrowing constraints taking the aggregate

outcomes as given, here I ask how these borrowing constraints affect aggregate outcomes

themselves. To this end, I present a dynamic equilibrium model in which there are two

types of firms (or “entrepreneurs”), one of which is more procyclical than the other. To

understand how this difference in cyclicality affects asset prices, I assume that entrepreneurs

make investments using different capital assets. Even though there is a lot of heterogeneity—

heterogenous entrepreneurs lever up to invest in heterogeneous assets subject to heterogenous

borrowing constraints—I manage to keep the model tractable by assuming that overlapping

generations of short-lived entrepreneurs borrow from long-lived investors. Indeed, it admits

an explicit solution in some configurations. I now proceed to investigate how procyclical

promises affect aggregate investment, prices, and output in the time series and the cross

section.
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4.1 Environment. I set up the model in discrete time, t ∈ {...,−1, 0, 1, ...}. At each

date, an i.i.d. state st is realized, assuming one of two equally likely realizations, a or b.

There is a single perishable consumption good, which serves as numeraire, and two

durable capital assets, called α- and β-assets, which are each in constant supply K. The

state-s price of asset τ ∈ {α, β} is denoted by pτs , and its average by p̄τ := E [ pτ ] ≡ (pτa+pτb )/2.

There are overlapping generations of two types of risk-neutral entrepreneurs, α- and

β-entrepreneurs. At each date, a unit continuum of each type is born and lives for two

dates. When they are born, they have an endowment that depends on the state: they

have a unit of the consumption good in state a and nothing in state b. (This is the only

exogenous difference between the states.) When young, they borrow and invest; when old,

they produce and consume. Each α-entrepreneur uses the α-asset to do a risky investment

that pays off only in state a and, symmetrically, each β-entrepreneur uses the β-asset to do

a risky investment that pays off only in state b. The investments are both constant returns

to scale with expected return A. I.e.

yαt+1 = α(k)(st+1) =



















2Ak if st+1 = a,

0 if st+1 = b,

(14)

yβt+1 = β(k)(st+1) =



















0 if st+1 = a,

2Ak if st+1 = b.

(15)

So “α” and “β ” each denote three related things: investment technologies, the entrepreneurs

who operate them, and the type of capital asset they employ.

There are also long-lived deep-pocketed investors in the background. They are risk-

neutral and consume at each date, discounting the future at the risk free rate Rf , which I
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assume is not too large relative to entrepreneurs’ productivity:18

Rf < AK. (16)

Investors can lend to entrepreneurs or use either asset (but not both) to invest in a deter-

ministic technology γ that pays off at the next date, where, as usual, nothing is produced

if nothing is invested, γ(0) = 0, and more is produced if more is invested, γ ′ > 0. Further,

I assume that γ has decreasing returns to scale, γ ′′ < 0, and is at most as productive as

entrepreneurs’ investments, γ ′(0) = A. Since each capital asset is in constant supply K,

the quantity of τ -capital that investors hold is the quantity not held by τ -entrepreneurs:

in state s, investors hold K − kτ
s , where kτ

s denotes the amount of the τ -asset that each

τ -entrepreneur holds in state s.19

4.2 First-best/Arrow–Debreu. To focus on the effects of financial constraints, I have

set up the environment so that not much happens in the benchmark without them: in the

Arrow–Debreu/first-best outcome, entrepreneurs hold all of the assets, since they have the

most productive investments. Hence, the expected return A on their investments coincides

with the aggregate productivity. And, since productivity does not change over time, asset

prices are constant. So is realized output: exactly one type of entrepreneurs produces 2AK

at each date t, these are the α-entrepreneurs if st = a and β-entrepreneurs if st = b. In

summary, there are no time-series fluctuations in productivity, prices, or output. Moreover,

there are no ex ante differences in the cross section either: expected productivity, prices, and

expected output coincide for α- and β-assets/entrepreneurs.

Lemma 6. In the Arrow–Debreu outcome, α-entrepreneurs hold all α-assets, kα
s = K, and

β-entrepreneurs hold all β-assets, kβ
s = K. The equilibrium has the following properties.

18This will ensure that entrepreneurs exhaust their capacity; I use it only in the proof of Lemma 8 in the
Appendix.

19Note that I give one index to entrepreneurs’ asset holding, representing both the type of asset and the
entrepreneur who holds it. Rather than introducing a separate notation for investors’ asset holdings, I just
make use of the fact they hold whatever entrepreneurs do not by market clearing.
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(i) Aggregate productivity 20 is constant and equal to A.

(ii) The prices of α- and β-assets are equal and constant; they equal the price of a perpetuity

that pays coupon A,

pαs = pβs =
A

Rf − 1
. (17)

(iii) Aggregate output is constant and equal to 2AK.

4.3 Borrowing constraints. I assume that an entrepreneur’s debt capacity is given

by DC = α0 + α1E [Mpy], where α0 and α1 are as in Lemma 3 above.21 I.e. the loan ℓ an

entrepreneur gets must satisfy the constraint

ℓ ≤ α0 + α1E [Mpy] . (18)

20To avoid ambiguity, let me state the definition of the aggregate productivity in state s formally:

aggregate productivity
∣

∣

∣

s
=

total expected output

asset supply

∣

∣

∣

∣

s

=
E
[

α
(

kαs
)

+ γ
(

K − kαs
)

+ β
(

kβs
)

+ γ
(

K − kβs
)

]

2K
.

21As touched on in Subsection 2.3, I adopt the interpretation that the entrepreneur can divert a fraction
δ of his assets, getting private benefits B = δpk and leaving (1 − δ)k as collateral. This interpretation of
δ—“diversion” rather than “depreciation”—is convenient just because it implies the supply of assets remains
constant; it does not affect anything else.

Many papers use capital diversion to generate borrowing constraints (e.g., Albuquerque and Hopenhayn
(2004), DeMarzo and Fishman (2007b), Rampini and Viswanathan (2010)); indeed, as formalized in
DeMarzo and Fishman (2007a), it is a useful catch-all for many agency problems. That said, flagrant di-
version is a serious friction itself: Mironov (2013) calculates that Russian companies siphoned off upward of
ten percent of GDP in both 2003 and 2004; Akerlof and Romer (1993) describe related problems of explicit
“looting” at US firms.
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After substituting in for α0 and α1, a little manipulation22 gives

ℓ ≤
(1− δ)E [ p] + δ

2
E [p | success]

Rf

k. (19)

Observe that an entrepreneur’s borrowing limit depends not only on the average value of

his assets, E [ p], but also on another term, namely the expectation of the price given his

investment succeeds (i.e. does not pay off zero); this term reflects the procyclical promises

term in the debt capacity decomposition (Proposition 1). Now, recall that α-entrepreneurs

succeed only in state a and β-entrepreneurs only in state b. Thus, for α-entrepreneurs,

E [ pαs |α-success] = pαa and, likewise, for β-entrepreneurs, E
[

pβs | β-success
]

= pβb , which

helps us to simplify the borrowing constraints:

ℓα ≤
(1− δ)p̄α + δpαa/2

Rf

kα and ℓβ ≤
(1− δ)p̄β + δpβb /2

Rf

kβ (20)

(where I have added back the sub- and superscripts to distinguish between states and assets).

4.4 Equilibrium. I now move on to study the competitive Markov23 equilibrium subject

to the borrowing constraints above. An equilibrium constitutes a profile
〈

kτ
s , ℓ

τ
s ,
(

T τ
s (a), T

τ
s (b)

)〉

for each type of entrepreneur τ ∈ {α, β} in each state s ∈ {a, b}, where kτ
s is the amount

of assets that τ -entrepreneurs hold, ℓτs is the amount they borrow, and
(

T τ
s (a), T

τ
s (b)

)

are

their state-contingent repayments at the next date.24 The profile is an equilibrium if it is

22First, substitute in for α0 and α1 from Lemma 3, noting that A in Lemma 3 is replaced by 2A, since
the investment payoffs are defined slightly differently in this section; then, manipulate using M ≡ 1/Rf (by
risk neutrality) and y = 2Ak1succ (by the definitions above):

DC = (1− δ)E [Mp] k +
δ

2A
E [Mpy]

=
(1− δ)E [ p] k

Rf

+ δE [p1succ] k.

From here, the Law of Total Expectation, E [p1succ] = P [ success ]E [ p| success ], gives equation (19).
23I have already implicitly restricted attention to Markov allocations, since I use the state st, rather than

the entire history, to index the variables above.
24I focus on one-period contracts. This is without loss of generality not only in my environment, in

which entrepreneurs live for only two dates, but also in general environments with limited enforcement and
no exclusion, as shown in Rampini and Viswanathan (2010). This suggests my results are not special to
short-lived borrowers.
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consistent with everyone optimizing and markets clearing:

(i) Entrepreneurs maximize expected consumption subject to their borrowing constraints

above (equation (20)) and their budget constraints

1 + ℓτa = pτak
τ
a and ℓτb = pτbk

τ
b (21)

(where I have used the fact that the entrepreneurs’ initial wealth is one in state a and

zero in state b).

(ii) Investors are indifferent at the margin among consuming, lending, and investing (this

is tantamount to market clearing here, given investors are deep pocketed and risk

neutral):25

Rf =
E [T τ (st+1) | st]

ℓτst
=

γ ′
(

K − kτ
st

)

+ E
[

pτst+1
| st
]

pτst
. (MC)

In words, this condition (MC) says that investors’ marginal rate of substitution, which

is just Rf here, is equal to their marginal expected return from lending, and also equal

to their marginal expected return from investing.

4.5 Time series fluctuations. Unlike the unconstrained entrepreneurs in the Arrow–

Debreu benchmark, the constrained entrepreneurs here can invest more when they have more

wealth to scale up. Thus, entrepreneurs’ asset holdings are higher in state a, when they have

some initial wealth, than in b, when they do not (in fact, they hold no capital at all in b,

given their endowments are normalized to zero and hence they have nothing to pledge). This

increased demand for capital assets drives prices up in state a, so asset prices are higher in

a than b. Moreover, since entrepreneurs have the most productive investments, capital is

better allocated when they have more of it. Hence, average productivity is higher in a than

b. In these senses, state a is a “boom” and state b is a “recession.” (Consistent with this

interpretation, I also find that aggregate output is higher in a than b. I defer discussing this,

25I show this equivalence formally in an earlier version. I omit here it to streamline the analysis.
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since it depends on the cross-sectional differences between α- and β-entrepreneurs, which I

do not get into until the next subsection.)

Proposition 2. State a is a “boom” and state b is a “recession” in the sense that the following

statements hold.

(i) Aggregate productivity is higher in state a than in state b.

(ii) The prices of both capital assets are higher in state a than in state b, pαa > pαb and

pβa > pβb .

(iii) Aggregate output is higher in state a than in state b.

Since individual productivity and asset supply do not change over time, these fluctuations are

entirely the result of assets being better allocated in state a than b—they are pure “allocation

cycles.” Aggregate productivity goes up in booms when assets go to their best use and

down in recessions when they do not.26 So does output, even though individual investments

become less productive when investment goes up (due to decreasing returns to scale). What

Basu and Fernald (2001) call an “essential feature of business cycles” (p. 225)—output and

productivity moving together—arises here just because assets are better allocated in booms,

in line with Eisfeldt and Rampini’s (2006) empirical findings.27 Moreover, Hsieh and Klenow

(2009) find that asset allocation is a major driver of output, suggesting my allocation cycles

could be a first-order contributor to real-world business cycles. Indeed, even though I keep

my model stylized to highlight a single force, my assumptions and predictions line up with

26Viewed as allocation cycles, business cycles in my model are the result of a time-varying efficiency
wedge. According to Chari, Kehoe, and McGrattan (2007), such efficiency wedges are a first-order driver
of twentieth-century business cycles, whereas the investment wedges generated by most models of financial
frictions are not.

27Eisfeldt and Rampini (2006) stress that capital reallocation is also procyclical; my model can speak to
this too, albeit in a stylized way. Since there are just two states, the same quantity of capital is reallo-
cated in booms and recessions—assets are reallocated from investors to entrepreneurs when state a arrives
and the same assets are reallocated back to investors when state b returns. But the price of these assets
is (endogenously) procyclical, making measured capital allocation—the quantity times the price of capi-
tal reallocated—procyclical too. (Procyclical capital prices are also key to generating procyclical capital
reallocation in Li and Whited (2015).)
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empirical findings: according to Basu (1996), “cyclical factor utilization is very important,

returns to scale are about constant, and technology shocks are small” (p. 719).

The procyclicality of aggregate asset allocation is the result of the procyclicality of in-

dividual firms’ debt capacity. This is consistent with evidence on procyclical leverage in

Begenau and Salomao (2014), Korajczyk and Levy (2003), and Korteweg and Strebulaev

(2015).28 Further, I find that procyclical debt capacity translates into procyclical investment,

consistent with evidence in Dangl and Wu (2015), and procyclical debt issuance, consistent

with evidence in Covas and Den Haan (2011).

4.6 Cross-sectional variation and the collateral premium. Since state a is a boom

and state b a recession (Proposition 2), α-entrepreneurs are procyclical and β-entrepreneurs

countercyclical (cf. their investment technologies (14)–(15)). Hence, due to procyclical

promises, α-entrepreneurs can lever up and invest more than β-entrepreneurs (cf. the bor-

rowing constraints (20)). This drives up the price of α-assets relative to β-assets. In other

words, α-assets are more expensive than β-assets, because you can borrow more against

them—they trade at a collateral premium.

Proposition 3. Procyclical (α-) assets trade at a premium over countercyclical (β-) assets:

pαs > pβs for s ∈ {a, b}.

The specific mechanism connecting entrepreneurs’ demand to asset prices goes through in-

vestors’ production function γ. Since entrepreneurs can lever up relatively more against pro-

cyclical assets, investors are left holding few of them. Thus, since γ has decreasing returns

to scale, their marginal productivity is relatively high. This marginal productivity sets the

price, resulting in a high price of procyclical assets relative to countercyclical assets. Thus,

even though prices are set by investors (who are marginal), cross-sectional price differences

reflect differences in the borrowing constraints of entrepreneurs (who are infra-marginal).

28Halling, Yu, and Zechner (2016) point out that the empirical findings in Korteweg and Strebulaev
(2015) and Korajczyk and Levy (2003) capture only the direct effect of the business cycle on leverage,
but do not take into account how leverage determinants change over the business cycle.
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This argument hinges on the assumption that assets are not freely redeployable across

sectors, in line with, e.g., Shleifer and Vishny (1992):29 here, investors use either α- or β-

assets, but not both. If, to the contrary, investors used both types of assets—i.e. their output

were a function γ̃ of their total asset holdings of both assets, rather than the function γ of

each asset individually—then there would be no collateral premium, since in equilibrium

both assets would have the same marginal productivity γ̃ ′. This suggests that specific assets

that are hard to redeploy could exhibit a higher collateral premium.

This finding is not in conflict with the widespread idea that redeployable assets are the

best collateral. It just suggests that this might not lead to a premium in their prices, as their

marginal valuation could already reflect their efficient use. To see why, consider the stylized

example of a vineyard used to grow grapes for wine and a farm used to grow barley and

hops for beer. Since wine is procyclical and beer is acyclical, the vineyard could represent an

α-asset and the farm a β-asset. Now, since the vineyard is only useful to nearby winemakers,

an increase in their debt capacity could increase demand enough to drive up its price, i.e.

to generate the collateral premium. In contrast, since the farm is useful to many different

kinds of farmers, an increase in brewers’ debt capacity is unlikely to move its price. Hence,

even if the farm is better collateral than the vineyard in absolute terms, the vineyard’s price

reflects its collateral value more. The reason is that financial constraints affect demand more

for vineyards than for farmland.

4.7 A comment on policy. Since α-entrepreneurs’ investments are larger than β-

entrepreneurs’, output is highest when they succeed, i.e. output is greater in state a than

in state b, as stated above (Proposition 2). This suggests one unusual policy implication:

transferring wealth from countercyclical entrepreneurs to procyclical entrepreneurs, a policy

29Shleifer and Vishny (1992) stress the empirical relevance of this assumption, saying that

Unfortunately, most assets in the world are quite specialized and, therefore, are not redeploy-
able. Oil rigs, brand name food products, pharmaceutical patents, and steel plants have no
reasonable uses other than the one they are destined for. When such assets are sold, they have
to be sold to someone who will use them in approximately the same way (p. 1344).
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that amplifies output fluctuations, can boost welfare.30 It helps because the more procyclical

an entrepreneur is, the more he can borrow to buy assets and scale up his investment, and

hence the better asset allocation is. Of course, risk aversion would countervail agianst this

result. Hence, I do not see it as something that policy makers should think about imple-

menting off the shelf. Still, I think it points to benefits of procyclicality that could be worth

taking into account, especially since the welfare costs of business cycle fluctuations appear

to be quite small (e.g., Alvarez and Jermann (2004) and Lucas (1987)).

4.8 Explicit solution. Given a specific functional form for investors’ production tech-

nology γ, the model admits an explicit solution:

Lemma 7. Let the investors’ technology be γ(k) = A log(1 + k). The equilibrium prices for

τ ∈ {α, β} are

pτa =
1 +K − kτ

a + A(2Rf − 1)(1 +K)

2Rf(Rf − 1)(1 +K)(1 +K − kτ
a)
, (23)

pτb =
(2Rf − 1)(1 +K − kτ

a) + A(1 +K)

2Rf (Rf − 1)(1 +K)(1 +K − kτ
a)

, (24)

where, for each τ , the equilibrium asset holdings are kτ
b = 0 and

kτ
a =

−aτ1 −
√

(aτ1)
2 − 4a0aτ2

2aτ2
, (25)

30Formally, a tax-subsidy scheme that transfers endowments from a countercyclical entrepreneur to a
procyclical entrepreneur increases expected output, i.e. the entrepreneurs’ expected output in state s,

A
(

kαs (ws + ǫ) + kβs (ws − ǫ)
)

= 2RA

(

ws + ǫ

2Rpαs − pαa − (1 − δ)pαb
+

ws − ǫ

2Rpβs − pβb − (1− δ)pβa

)

, (22)

is increasing in ǫ.
One caveat: this is for a transfer from one entrepreneur to another. A transfer from from all countercyclical

entrepreneurs to all procyclical entrepreneurs would affect prices, something this analysis does not take into
account.

25



where

a0 = 4R2
f(Rf − 1)(1 +K)2, (26)

aα1 = −(1 +K)
(

(2Rf − 1)
(

δ + A(2Rf − 1)
)

− (1− δ)A+ 4R2
f (Rf − 1)

)

, (27)

aα2 = δ(2Rf − 1), (28)

aβ1 = −(1 +K)
(

(2Rf − 1)
(

δ + (2Rf − δ)A+ 4R2
f (Rf − 1)

)

)

, (29)

aβ2 = δ. (30)

4.9 Comparative statics. I now turn to comparative statics on δ, which can be in-

terpreted as the rate of depreciation or the proportion of assets that can be diverted. The

analysis implies that debt capacity is more sensitive to cyclicality for high δ (see equation

(20)). Given the analysis in Section 3, this suggests the new testable prediction that the

correlation between leverage and cash flow beta should be increasing in δ, where increas-

ing δ could be captured by (i) decreasing asset tangibility across firms or (ii) decreasing

the strength of legal enforcement across countries. Further, in the model, asset prices and

aggregate output are more volatile for low δ, consistent with evidence that aggregate fluctua-

tions are negatively related to economic and financial development (King and Levine (1993),

Koren and Tenreyro (2007), and Rajan and Zingales (1998)).31

4.10 Financial assets. So far, I have focused on how procyclical promises affect the

prices of capital assets. Here, I try to say something about financial assets too. To do so, I

model them in a stylized way, defining a “stock” in τ -entrepreneurs as a claim on the output

of all their future generations. To find an expression for its price, recall that entrepreneurs

invest only in state a (they have no wealth in state b). Hence, their investments pay off

31This echoes the results of models such as Albuquerue and Wang (2008), Cooley, Marimon, and Quadrini
(2004), Kiyotaki and Moore (1997), and Rampini (2004) in which limited enforceability amplifies aggregate
fluctuations. Unlike in these models, fluctuations in my model do not result from productivity shocks at
any individual firm, but only from changes in capital allocation across firms. (Eisfeldt and Rampini (2008)
explore a mechanism based on managers’ private information that also leads to inefficient capital allocation
in downturns.)
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with probability 1/4—α-entrepreneurs’ pay off in state a following a and β-entrepreneurs’

in b following a. Thus, the average stock prices are given by the expected discounted sum of

future cash flows as follows:

S̄α = E

[

∞
∑

t=1

1

4
Mt α (kα

a )

]

and S̄β = E

[

∞
∑

t=1

1

4
Mt β

(

kβ
a

)

]

, (31)

where I have reintroduced the SDF M , to capture, e.g., the marginal utility of an (unmod-

eled) investor in the stock market. To sum the series, I separate out the time discounting by

writing M in terms of the risk-neutral measure Q. This gives

S̄α =
Akα

a

2(R− 1)

dQ

dP
(a) and S̄β =

Akβ
a

2(R− 1)

dQ

dP
(b). (32)

These expressions give us another way to see the trade-off between the procyclical promises

and the discount rate terms. The procyclical promises term allows α-entrepreneurs to lever

up, so kα
a > kβ

b above. This pushes up the price S̄α of the α-stock. But the discount rate

term should put more weight on cash flows in state a (when output is low) than in state b

(when it is high), or

dQ

dP
(a) < 1 <

dQ

dP
(b). (33)

This pushes up the price S̄β of the β-stock. Like in the analysis of debt capacity above

(Section 3), which term dominates for stock prices depends on the trade-off between these

two effects. In this asset pricing context, the procyclical promises term may help to explain

why procyclical assets do not trade at as much of a discount as models based on risk aversion

alone typically suggest they should (Fama and French (2004)).

5 Conclusion

In this paper, I explore how cyclicality affects debt capacity. I start with the observation that
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there is a benefit of procyclicality, present in models with collateral constraints and related

financial frictions: more procyclical firms can make higher repayments on average. The

reason is that assets are useful as collateral only if you have them when they are valuable,

and procyclical firms have more assets in booms, exactly when their prices are high. I derive

a robust decomposition of a firm’s debt capacity into a “procyclical promises term,” capturing

this new benefit of procyclicality, and a “discount rate term,” capturing its established cost.

I go on to show that the procyclical promises term can be just as important as the discount

rate term in some classical models.

To explore the implications of the mechanism for the aggregate economy, I embed it in

a general equilibrium model. I show that it gives rise to fluctuations in aggregate output,

productivity, and prices, even in an environment in which there is no time-series variation

whatsoever in the frictionless benchmark. I.e. there are aggregate fluctuations, but they are

pure “allocation cycles”—they arise entirely because investment goes up when procyclical

firms are most productive, since procyclical firms are the firms that can lever up their

investments the most. This leads to high demand for the assets they use, and hence generates

a collateral premium on these “procyclical assets” in the cross section.

These results emphasize that allocating more capital to procyclical firms can improve

capital allocation by loosening financial constraints. Thus, within the model, an unusual

policy can improve welfare, even though it amplifies the business cycle: make transfers to

procyclical firms. This points to a possible trade-off between improving capital allocation

and smoothing aggregate fluctuations.
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A Proofs

Proof of Lemma 1

The result is immediate from the argument in the text.

Proof of Lemma 2

Debt capacity is highest if the repayment is highest in every state, i.e. if the inequality binds

in equation (4). Since creditors receive the repayment only if the investment succeeds, we

have that

DC = E

[

M1succ

(

RfE [Mpy]−
B

π1 − π0

)

∣

∣

∣
e = 1

]

, (34)

where I have conditioned on e = 1, as is ensured by the incentive constraint. Now, since

1succ depends only on e (i.e. it is independent of M) and E [M ] = 1/Rf , we can compute the

debt capacity:

DC = E [1succ | e = 1]E [M ]

(

RfE [Mpy]−
B

π1 − π0

)

(35)

= π1

(

E [Mpy]−
B

Rf (π1 − π0)

)

(36)

= α0 + α1E [Mpy] , (37)

where α0 and α1 are as stated in the lemma.
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Proof of Lemma 3

From equation (7), we have immediately that

DC = E

[

M

(

(1− δ)pk +
δpy

A

)]

(38)

= (1− δ)E [Mp] k +
δ

A
E [Mpy] (39)

= α0 + α1E [Mpy] , (40)

where α0 and α1 are as stated in the lemma.

Proof of Proposition 1

The proof is by direct calculation. I start with the covariance formula:

E [Mpy] = E [Mp]E [y] + Cov [Mp, y] . (41)

Recall that the forward price of an asset with price p is fp = RfE [Mp], so we can write

E [Mpy] =
1

Rf

fp E [y] + Cov [Mp, y] . (42)

From here, most of the proof is just the computation of the second term on the RHS. I use the

following notation to streamline it: for a random variable X, X̄ := E [X ] and ∆X := X− X̄ ,

so X ≡ X̄ +∆X . Now:

Cov [Mp, y] = Cov
[

(M̄ +∆M )(p̄+∆p), y
]

(43)

= Cov
[

M̄p̄+ p̄∆M + M̄∆p +∆M∆p, y
]

(44)

= p̄Cov [∆M , y] + M̄Cov [∆p, y] + Cov [∆M∆p, y] . (45)
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Now, recall that for any random variables X and Y we have that Cov [X, Y ] = Cov [∆X , Y ].

With this and the fact that M̄ = 1/Rf , we can substitute back for Cov [Mp, y] in the original

expression and write

E [Mpy] =
1

Rf

fp E [y] + M̄Cov [∆p, y] + p̄Cov [∆M , y] + Cov [∆M∆p, y] (46)

=
1

Rf

fp E [y] +
1

Rf

Cov [p, y] + p̄Cov [M, y] + ǫ, (47)

where ǫ = Cov [∆M∆p, y]. This is the expression in the proposition.

Proof of Lemma 4

The proof comprises calculating asset prices and the SDF, i.e. the constants a0 and a1

mentioned in the text and the lemma.

Asset prices. After the shock, the rental price of capital is constant. The price of assets

is just the present value of the rental prices, and we can use the formula for a perpetuity:

p = pt∗+1 =
∞
∑

t=1

At∗+1F
′(K)

Rt
f

(48)

=
At∗+1F

′(K)

Rf − 1
. (49)

So we can write pt∗+1 = a0At∗+1 for a0 := F ′(K)/(Rf − 1).

SDF. After the shock, t ≥ t∗, the output is Y ≡ At∗+1F (K) by assumption. Re-writing

equation (10) gives

M ≡ Mt∗,t∗+1 =
Yt∗

RfAt∗+1F (K)
. (50)

So we can write M = a1/At∗+1 for a1 := Yt∗/(RfF (K)).
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Proof of Lemma 5

I start with the definition of ǫ in Proposition 1. I substitute p = a0A and M = a1/A as

in Section 3 (see Lemma 4) to manipulate the expression for ǫ. Finally, I use the Taylor

approximation to show that it is close to zero.

From equation (9) and the expressions for p and M in Lemma 4, we have that

ǫ = Cov
[(

M − E [M ]
)(

p− E [p]
)

, y
]

(51)

= Cov
[(a1

A
− E

[a1
A

])

(a0A− E [a0A]) , y
]

(52)

= a0a1Cov

[(

1

A
− E [1/A]

)

(A− E [A]) , y

]

(53)

= a0a1Cov

[

1− E [1/A]A−
1

A
E [A] + E [1/A]E [A] , y

]

. (54)

By the linearity of the covariance and the fact that the covariance of anything and a constant

is zero, this expression simplifies to

ǫ = a0a1

(

− E [1/A] Cov [A, y]− E [A] Cov

[

1

A
, y

]

)

. (55)

Now, I use the first-order Taylor approximation of 1/A centered around the mean E [A]:

1

A
≈

1

E [A]
+

(

1

A

)

′
∣

∣

∣

∣

A=E[A]

(A− E [A]) (56)

=
1

E [A]
−

1

(E [A])2
(

A− E [A]
)

(57)

=
2

E [A]
−

A

(E [A])2
. (58)

This implies E [1/A] ≈ 1/E [A]. Using this and returning to ǫ gives:

ǫ ≈ a0a1

(

−
1

E [A]
Cov [A, y]− E [A] Cov

[

2

E [A]
−

A

(E [A])2
, y

]

)

= 0. (59)
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Proof of Lemma 6

The proof follows from the fact that in the first-best each capital asset must be put to its

most productive use. Since entrepreneurs are always more productive than investors, α-

entrepreneurs hold all α-assets and β-entrepreneurs hold all β-assets or kα
s = K and kβ

s = K

in both states. The three statements in the proposition all follow:

Statement (i). Given that kα
s = K and kβ

s = K, the aggregate productivity (see

footnote 20) is

E
[

α
(

kα
st

)

+ γ
(

K − kα
st

)

+ β
(

kβ
st

)

+ γ
(

K − kβ
st

)]

2K
=

E
[

α
(

K
)

+ β
(

K
)]

2K
= A (60)

since γ(0) = 0 and E [τ(k)] = Ak for τ ∈ {α, β}.

Statement (ii). The prices of α- and β-assets are determined such that investors are

indifferent between consuming and buying assets (cf. the pricing equation (MC) in Subsection

4.4). Entrepreneurs hold all the assets, kτ
s = K, so γ ′(K − kτ

s ) = γ ′(0) = A; hence,

Rf =
γ ′
(

K − kτ
s

)

+ p̄τ

pτs
(61)

=
A+ p̄τ

pτs
(62)

for both assets and both states. Substituting in p̄τ = (pτa + pτb )/2 and rearranging implies

that pτa and pτb solve the following system:























(2Rf − 1)pτa = 2A+ pτb ,

(2Rf − 1)pτb = 2A+ pτa.

(63)

Solving gives pτs = A/(Rf − 1) for τ ∈ {α, β} and s ∈ {a, b}.
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Statement (iii). Expected output is

total expected output = E
[

α
(

kα
s

)

+ γ
(

K − kα
s

)

+ β
(

kβ
s

)

+ γ
(

K − kβ
s

)]

= 2AK. (64)

Proof of Proposition 2

To prove the proposition, I first analyze entrepreneurs’ borrowing and investment behavior.

I prove that entrepreneurs borrow to capacity (Lemma 8). This allows me to solve for the

entrepreneurs’ asset holdings, kτ
s for τ ∈ {α, β} and s ∈ {a, b} (Lemma 9).

Lemma 8. Entrepreneurs borrow to capacity, ℓ = DC, i.e. the borrowing constraints in

equation (20) bind.

Proof. I prove this result in two steps. First, I show that the first-best outcome is not

attained. This implies an upper bound on prices: pτs < (A + p̄τ )/Rf . Second, I show that

given prices are below this bound, entrepreneurs wish to scale up their investments as much

as possible, so their borrowing constraints bind. Intuitively, since entrepreneurs’ investments

are highly productive, they borrow as much as they can to invest as much as they can. Note

that the meat of the argument is in Step 2; Step 1 is all about making sure an inequality in

Step 2 is strict.

Step 1: First-best not attained. This says that entrepreneurs do not hold all the

capital, as they would in the first-best (Lemma 6): kτ
s < K for both types of entrepreneurs

τ ∈ {α, β} in both states s ∈ {a, b}.

To prove the result, start by writing DC from equation (20) as

DCτ =
(1− δ)p̄τ + δ

2
pτ

succ

Rf

kτ , (65)

where pτ
succ

denotes the price of τ -assets given τ -entrepreneurs succeed—i.e. pα
succ

= pαa and
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pβ
succ

= pβb .

Now, suppose (in anticipation of a contradiction) that an entrepreneur holds all the assets

in state s, kτ
s = K for τ ∈ {α, β}. Thus, a τ -entrepreneur’s budget constraint implies

K =
ws + ℓτs

pτs
(66)

where ws denotes his endowment in state s (wa = 1 and wb = 0). Since ℓτs ≤ DC, by

definition, we have

K ≤
ws + DC

pτs
. (67)

Substituting kτ = K into equation (65) and rearranging gives

K ≤
Rfws

Rfpτs − (1− δ)p̄τ − δpτsucc/2
(68)

≤
Rf

Rfpτs − p̄τ
(69)

since p̄τ = (pτa + pτb )/2 ≥ pτsucc/2. Now, the pricing equation (MC) gives an expression for

the denominator above,

Rfp
τ
s − p̄τ = γ ′(K − kτ

s ) = γ ′(0) = A, (70)

since kτ
s = K by hypothesis. Substituting this into equation (69) implies

K ≤
Rf

A
. (71)

This contradicts the assumption in equation (16). We conclude that kτ
s < K and hence

γ ′(K − kτ
s ) < A. Given this, equation (MC) implies that

pτs <
A + p̄τ

Rf

. (72)
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Step 2: Entrepreneurs scale up. In state s at date t, a τ -entrepreneur borrows ℓ at

rate Rf to invest k to maximize his expected payoff, i.e. to maximize his expected output

plus the future value of his assets minus his repayments:

E
[

τ(k) + pτst+1
k − T (s)

]

= Ak + p̄τk − Rfℓ (73)

subject to the borrowing constraint in equation (20) and his budget constraint

pτs k = ws + ℓ, (74)

(remember ws is the entrepreneur’s endowment, wa = 1 and wb = 0). Substituting from the

budget constraint gives the objective function

Ak + p̄τk − Rfℓ = (A+ p̄τ )
w + ℓ

pτs
− Rfℓ (75)

=

(

A+ p̄τ

pτs
− Rf

)

ℓ+
A+ p̄τ

pτs
w. (76)

This is strictly increasing in ℓ as long as (A+ p̄τ )/pτs > Rf or

pτs <
A+ p̄

Rf

, (77)

which is satisfied by Step 1 above (equation (72)). Hence, entrepreneurs maximize ℓ, i.e.

they borrow to capacity: ℓ = DC.

I now solve for entrepreneurs’ asset holdings.

Lemma 9. Entrepreneurs’ asset holdings are given by

kα
a =

2Rf

(2Rf − 1)pαa − (1− δ)pαb
, (78)

kβ
a =

2Rf

(2Rf − 1 + δ)pβa − pβb
, (79)
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and kα
b = kβ

b = 0.

Proof. Given (both types of) entrepreneurs have a unit wealth in state a and nothing in

state b, their budget constraints read

pτak
τ
a = 1 + DCτ

a, (80)

pτbk
τ
b = DCτ

b . (81)

Now, we can find kτ
b and kτ

a given that entrepreneurs borrow to capacity, ℓ = DC (Lemma

8).

To find kτ
b , observe that DC is proportional to k (cf. equation (65)). Hence, the state-b

budget constraint above implies that it must be that kτ
b = 0 for τ ∈ {α, β}.

To find kτ
a , substitute the expression for DC from equation (65) into the state-a budget

constraint:

pτak
τ
a = 1 + DCτ

a = 1 +
(1− δ)p̄τ + δ

2
pτ

succ

Rf

kτ
a . (82)

Rearranging gives

kτ
a =

Rf

Rpτa − (1− δ)p̄τ − δ
2
pτ

succ

. (83)

Substituting pα
succ

= pαa and pβ
succ

= pβb gives the expressions in the lemma.

Given Lemma 8 and Lemma 9, I turn to the statements in the proposition.

Statement (i). The fact that productivity is higher in state a than in state b follows

from Lemma 9 above, which implies that both types of entrepreneurs hold more assets in

state a than in state b. Aggregate productivity is higher when entrepreneurs hold more

assets, since they use them more productively than investors do.

Statement (ii). The fact that prices are higher in state a than in state b follows from
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equation (MC) and Lemma 9 above. Equation MC says that

pτs =
γ ′ (K − kτ

s ) + p̄τ

Rf

. (84)

Since γ ′ is decreasing (i.e. γ ′′ < 0), pτa > pτb if and only if kτ
a > kτ

b , as is the case by Lemma

9.

Statement (iii). For the proof of statement (iii), see the proof of Proposition 3 below.

There, I establish that α-entrepreneurs invest more than β-entrepreneurs in each state, i.e.

kα
s > kβ

s . As a result, output in state a is greater than output in state b, since the α-

technology pays off in state a and the β-technology pays off in state b.

Proof of Proposition 3

The proof is by contradiction. I proceed in three steps. In Step 1, I show that it it sufficient

to compare the state-a asset holdings, i.e. the price of α-assets is higher than the price of

β-assets in each state if and only if kα
a > kβ

a . In Step 2, I define the variable ∆τ as the

difference in the prices of τ -assets across states, ∆τ := pτa − pτb . I show that there is a

collateral premium—pαs > pβs—if and only if ∆α > ∆β . (Note that this step connects the

difference in prices across states with the difference across assets.) In Step 3, I suppose that

pβa ≥ pαa and show that it leads to a contradiction.

Step 1. Writing equation (MC) for each state s ∈ {a, b} and rearranging, we get an

expression for the average price:

p̄τ =
γ ′(K − kτ

a) + γ ′(K − kτ
b )

2(Rf − 1)
. (85)

Now, using kα
b = kβ

b = 0 from Lemma 9 and substituting back into equation (MC) gives

pτa =
(2Rf − 1)γ ′(K − kτ

a) + γ ′(K)

2Rf (Rf − 1)
(86)
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and

pτb =
γ ′(K − kτ

a) + (2Rf − 1)γ ′(K)

2Rf(Rf − 1)
. (87)

The expressions for pτa and pτb in equations (86) and (87) both depend only on kτ
a . The fact

that γ ′′ < 0 implies that both pτa and pτb are increasing in kτ
a . Thus, the following three

statements are equivalent: (i) pαa > pβa , (ii) pαb > pβb , and (iii) kα
a > kβ

a .

Step 2. Define ∆τ as the difference in price across states for a τ -entrepreneur:

∆τ := pτa − pτb . (88)

Equation (MC) gives an expression for ∆τ in terms of kτ
a ,

∆τ =
γ ′(K − kτ

a)− γ ′(K)

Rf

, (89)

so

γ ′(K − kτ
a) = Rf∆

τ + γ ′(K). (90)

With this and equation (85) from Step 1, we can compute that

p̄τ =
γ ′(K − kτ

a) + γ ′(K)

2(Rf − 1)
(91)

=
2γ ′(K) +Rf∆

τ

2(Rf − 1)
. (92)

From this expression, we can see that there is a collateral premium—p̄α > p̄β—if and only if

∆α > ∆β.

Step 3. Suppose (in anticipation of a contradiction) that pβs ≥ pαs . By Step 1, it must

be that kβ
a ≥ kα

a . Given the expressions for kβ
a and kα

a in Lemma 9, this says that

2Rf

(2Rf − 1 + δ)pβa − pβb
≥

2Rf

(2Rf − 1)pαa − (1− δ)pαb
(93)
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or

(2Rf − 1)pαa − (1− δ)pαb ≥ (2R− 1 + δ)pβa − pβb (94)

Now, eliminate pβa and pαa from this inequality using pβa = pβb +∆β and pαa = pαb +∆α:

(2Rf − 1)(pαb +∆α)− (1− δ)pαb ≥ (2Rf − 1 + δ)(pβb +∆β)− pβb (95)

or
(

2(Rf − 1) + δ
)

(pαb − pβb ) ≥ (2Rf − 1)(∆β −∆α) + (1− θ)∆β . (96)

The right-hand side is strictly positive since ∆β > 0 and, by Step 2, ∆β ≥ ∆α under the

hypothesis that pβa ≥ pαa . Thus, we have that

pαb − pβb > 0, (97)

contradicting the hypothesis that pβb ≥ pαb . We therefore conclude that pβb > pαb .

Proof of Lemma 7

α-entrepreneurs. Recall kα
b = 0, since entrepreneurs have no endowment in state b. Hence,

we have a (non-linear) system of three equations in three unknowns:

kα
a =

2Rf

(2Rf − 1)pαa − (1− δ)pαb
, (98)

(2Rf − 1)pαa = pαb +
2A

1 +K − kα
a

, (99)

(2Rf − 1)pαb = pαa +
2

1 +K
. (100)
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Equations (99) and (100) are linear in pαa and pαb . Solving them simultaneously gives

pαa =
1 +K − kα

a + A(2Rf − 1)(1 +K)

2Rf(Rf − 1)(1 +K)(1 +K − kα
a )

, (101)

pαb =
(2Rf − 1)(1 +K − kα

a ) + A(1 +K)

2Rf (Rf − 1)(1 +K)(1 +K − kα
a )

. (102)

Substituting these expressions into equation (98) gives the following equation for kα
a :

(

(2Rf − 1)
(

1 +K − kα
a + A(2Rf − 1)(1 +K)

)

)

kα
a

−(1− δ)
(

(2Rf − 1)(1 +K − kα
a ) + A(1 +K)

)

kα
a

= 4R2
f(Rf − 1)(1 +K)

(

1 +K − kα
a

)

.

(103)

This is a quadratic equation with coefficients a0, aα1 , and aα2 given in the lemma. kτ
a in

equation (25) is its solution (it is easy so see that the larger root is greater than K, making

the smaller root the relevant one, since no one can hold more than the total supply of assets

in equilibrium).

β-entrepreneurs. Again, kβ
b = 0, we have a (non-linear) system of three equations in

three unknowns:

kβ
a =

2Rf

(2Rf − (1− δ))pβa − pβb
, (104)

(2Rf − 1)pβa = pβb +
2A

1 +K − kβ
a

, (105)

(2Rf − 1)pβb = pβa +
2

1 +K
. (106)

Equations (105) and (106) have the same form as equations (99) and (100), and solving gives

the same expressions (with the α-index replaced by β). Substituting these expressions into
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equation (104) gives the following equation for kβ
a :

(

(

2Rf − (1− δ)
)(

1 +K − kβ
a + A(2Rf − 1)(1 +K)

)

)

kβ
a

−
(

(2Rf − 1)(1 +K − kβ
a ) + A(1 +K)

)

kβ
a

= 4R2
f (Rf − 1)(1 +K)(1 +K − kβ

a ).

(107)

This is a quadratic equation with coefficients a0, aβ1 , and aβ2 given in the lemma. kτ
a in

equation (25) is its solution (it is easy so see that the larger root is greater than K, making

the smaller root the relevant one, since no one can hold more than the total supply of assets

in equilibrium).

B Extensive Form for Subsection 2.3/General Collateral Constraints

Here I set up the model with asset substitution and collateral constraints in Subsection 2.3

as an extensive form game in which collateral constraints result from ex post renegotiation.

I do this for two reasons: first, to be rigorous about the optimality of the actions I describe

in Subsection 2.3 and, second, to allow for general bargaining power between the firm and

its creditor in the event of renegotiation. This not only affirms the baseline results—the

collateral constraint in the text (equation (1)) corresponds to the case in which the firm

has all the bargaining power—but also also generates a new testable comparative-static

prediction via the new bargaining power parameter. Note that here I am also explicit that

contractual repayments can depend on the aggregate state; this ensures that my results are

not driven by any restriction to plain debt (or other ad hoc contractual restrictions).

Extensive form. A firm and its creditor play an extensive-form game with three dates,

denoted by t = 0, t = 1/2, and t = 1. A firm has an investment that uses capital k0. At

t = 1/2, it can continue or abandon its investment. The investment has the chance of paying

off if the firm continues; it delivers private benefits B to the firm if it abandons. At t = 1,
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the firm’s debt matures, and it either repays or it defaults and renegotiates with its creditor.

In more formal detail, the timing is as follows.

t=0. The firm has assets k0 and borrows from a creditor via a contingent contract

promising T (s) in state s at t = 1.32

t=1/2. The firm learns whether its investment will succeed or fail and decides whether

to continue or abandon it. If it continues, its assets stay in place. If it abandons, it

gets private benefits B, but its assets depreciate by an amount δ. I let k1 denote the

assets the firm has after this decision:

k1 =











k0 if continue,

(1− δ)k0 if abandon.
(108)

t=1. If the firm has continued and its investment is successful, the firm produces

output y = Ak0; otherwise it produces nothing. Either way, its assets k1 stay in place.

Their price ps depends on the random state of the world s.

Next, the firm either repays T (s) to its creditor or defaults. If it defaults, the cred-

itor can seize its assets (in which case any output y is destroyed) or renegotiate the

repayment.

The division of surplus in renegotiation is determined by generalized Nash bargaining,

where the creditor has bargaining power ρ and disagreement payoff psk1, reflecting his

outside option of seizing the defaulting firm’s capital.33

I assume that the firm maximizes its expected payoff, including its private benefits. The

32I assume that the firm consumes whatever it borrows at t = 0; it does not use it to invest further, which
would in turn affect the payoff y, and hence the equilibrium repayments. This is just for simplicity. It does
not substantially affect the results. Indeed, I allow for this reinvestment in the analysis in Section 4; see,
e.g., Lemma 9.

33Renegotiation is a first-order friction for real-world firms (Roberts and Sufi (2009)) and liquidation
values are a first-order determinant of its outcome (Benmelech and Bergman (2008)). Although we will see
below that the same repayments can be implemented with or without renegotiation on the equilibrium path
(cf. equation 118), the threat of renegotiation is what determines the repayments in either case.
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creditor maximizes its expected payoff, and discounts the future using the SDF M (this

matters only for the computation of the debt capacity at the end of this analysis; it does not

affect the equilibrium behavior).

Assumptions. I make three assumptions on technologies and preferences that streamline

the analysis. First, I assume the investment payoff given success is large:

Ak0 ≥
B + (1− δ)psk0

(1− ρ)
(109)

for all s. Second, I assume that the private benefits are large too,

B > psk0 (110)

for all s. Third, I assume that the success of the investment is independent of the aggregate

state, i.e. y is independent of s.

Solution. I find the subgame perfect equilibrium of this extensive-form game. In the

steps below, I derive the equilibrium by backward induction.

1. Creditor’s choice of seizure or renegotiation at t=1.

• If the creditor seizes the assets, it gets psk.

• If it chooses to renegotiate, it divides the surplus with the firm according to the

Nash bargaining protocol, where the disagreement point is to seize the assets.

Hence, we can write the renegotiation payoffs at t = 1 as follows:

firm’s payoff = (1− ρ)y, (111)

creditor’s payoff = ρy + psk1. (112)

(Note that for simplicity I have written the firm’s payoff net of the private benefit

B, which it gets at t = 1/2 if it abandons the investment.)
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• The creditor’s payoff from renegotiation is always higher than its payoff from

seizing assets, so there is always renegotiation if the firm defaults.

2. Firm’s choice to default or repay at t=1.

• If the firm repays, it gets y + psk1 − T (s); the creditor gets the repayment T (s).

• If it defaults, we know from above that the creditor renegotiates. Hence, the firm

gets (1− ρ)y; the creditor gets ρy + psk1 (from equations (111) and (111)).

• Hence, the firm defaults if (1 − ρ)y > y + psk1 − T (s). This can be rewritten as

T (s) < ρy + psk1, so we can write the payoffs (net of the private benefits) as

firm’s payoff = max { y + psk1 − T (s) , (1− ρ)y } , (113)

creditor’s payoff = min {T (s) , ρy + psk1 } . (114)

3. Firm’s choice to continue or abandon.

• Success. If the firm learns its project is going to succeed, it knows its output is

y = Ak0 if it continues. Hence, its payoff is given by

firm’s payoff =











E [max {Ak0 + psk0 − T (s) , (1− ρ)Ak0 }] if continue,

B + E [max { ps(1− δ)k0 − T (s) , 0 }] if abandon.

(115)

(Note that these are the payoffs from the point of view of t = 1/2; hence they

are gross of the private benefits B.) Given (1 − ρ)Ak0 > B + ps(1 − δ)k0 by

assumption (equation (109)), the continuation payoff is always greater than the

abandonment payoff (no matter T ).

Hence, the firm always continues if it learns it will succeed.

• Failure. If the firm learns its project is failing, it knows its output is y = 0.
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Hence, its payoff is given by

firm’s payoff =











E [max { psk0 − T (s) , 0 }] if continue,

B + E [max { ps(1− δ)k0 − T (s) , 0 }] if abandon.
(116)

Given B > psk0 by assumption (equation (110)), the abandonment payoff is

always greater than the continuation payoff (no matter T ).

Hence, the firm always abandons if it learns it is failing.

• Observe that the repayment T does not affect the firm’s choice to continue/abandon

at t = 1/2 (given the assumptions in equations (109) and (110)).

4. Equilibrium repayments. Since T does not affect the firm’s choice to continue its

investment, the repayment to the creditor is given by the creditor’s payoff in equation

(114), with y = Ak0 and k1 = k0 in the event of success and y = 0 and k1 = (1− δ)k0

in the event of failure:

creditor’s payoff =











min {T (s) , ρAk0 + psk0 } if success,

min {T (s) , (1− δ)psk0 } if failure.
(117)

5. Maximum repayments. Observe that for each state s, the equilibrium repayment

in equation (118) is increasing in the promised repayment T (s). (This is because

increasing T (s) does not affect the firm’s choice at t = 1/2, as established above, and

because default does not induce a deadweight cost at t = 1.) Thus, the maximum

possible transfer in state s, which I denote by Tmax(s), is given by the expression in

equation (118) with T (s) ≡ ∞:

Tmax(s) =











ρAk0 + psk0 if success,

(1− δ)psk0 if failure.
(118)

For ρ = 0, this expression coincides with that in the text (equation (5)). Now, by
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analogy with the analysis there (equation (7)), we can rewrite it as

Tmax(s) = 1succ

(

ρAk0 + psk0
)

+
(

1− 1succ

)

(1− δ)psk0 (119)

= (1− δ)psk0 +
δpsy

A
+ ρy. (120)

6. Debt capacity. We can take the present value of Tmax(s) to get the debt capacity:

DC = α0 + α1E [Mpy] + ρE [My] , (121)

where α0 and α1 are as in Lemma 3.

Summary. The baseline result in Lemma 3 is the special case of this set-up in which

the creditor has no bargaining power, ρ = 0. For ρ > 0 the debt capacity formula is

unchanged except for an extra additive term proportional to ρ (compare equation (121)

with the expression in Lemma 3). The fact that the first terms are unchanged implies that

procyclical promises can matter even when creditors have a lot of bargaining power (although

ρ → 1 is ruled out by the assumption in equation (109)). However, this extra term depends

on M , which drives the discount rate term, but not on p, which drives the procyclical

promises term. This suggests that the discount rate term becomes more important relative

to the procyclical promises term as ρ increases. To the extent the that the ρ measures

enforceability—e.g., because it reflects creditor rights—this is in line with the analysis in the

text suggesting procyclical promises are more important when enforceability is limited; see,

e.g., the comparative statics on δ in Subsection 4.9.

C Many Capital Assets

Now consider a set-up in which everything is as in Subsection 3.1, except there is a large

number I of capital assets, indexed by i ∈ {1, ..., I}. To simplify things, I assume that
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the assets are substitutes; each is used separately, and total output is just the sum of the

output of each asset, Yt+1 =
∑I

i=1 Y
i
t+1. And, futher, I assume that all assets have the same

aggregate supply K and production functions have the same shape; they differ only in their

productivity: in notation, asset i’s output Y i
t+1 = Ai

t+1F (K) depends on the asset i only

via the productivity Ai
t+1. As above, there is a single productivity shock realized at date

t∗+1. Here, I assume each asset’s productivity has aggregate and idiosyncratic components,

i.e. Ai
t∗+1 = At∗+1 + εit∗+1, where εit∗+1 is independent noise. Under these assumptions, the

expressions for the rental price of capital and the SDF are just as in the single-asset case

above (with rental price of each asset indexed by its own expected productivity).

Now return to a small firm that makes a one-period investment at date t∗. Suppose that

it uses a single capital asset i∗ and that its output y is proportional to the productivity of this

asset plus (independent) noise: y = a(Ai∗

t∗+1 + εy), for some constant a. Can the procyclical

promises term ever dominate the discount rate term? Yes, if the asset i∗ that the firm uses

is sufficiently volatile:

Lemma 10. In the neoclassical economy with log utility and many capital assets described

above, the discount rate term for a firm that uses asset i∗ is approximately34

E
[

pi
∗

t∗+1

]

Cov [M, y] ≈ −β0Var [At∗+1] (122)

and the procyclical promises term for a firm that produces good i∗ is

1

Rf

Cov
[

pi
∗

, y
]

= β1

(

Var [At∗+1] + Var
[

εi
∗

t∗+1

]

)

(123)

where

β0 =
aYt∗E

[

Ai∗

t∗+1

]

F ′(K)

Rf(Rf − 1)E [At∗+1]
2 F (K)I

and β1 =
aF ′(K)

Rf (Rf − 1)
. (124)

Hence, the procyclical promises term dominates the discount rate term whenever Var
[

εi
∗

t∗+1

]

34The formula is not exact because I approximate the sample average of firms’ output with the expected
value and I approximate 1/A with its first-order Taylor expansion.
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is large, i.e. whenever the output of good i∗ is volatile.

Proof. I first compute the discount rate term and then the procyclical promises term. Below,

I use the approximations that

1

A
≈

2

E [A]
−

A

E [A]2
(125)

(cf. the proof of Lemma 5 above) and

1

I

I
∑

i=1

εi ≈ 0, (126)

where I have omitted the t∗+1 subscripts, as I will do throughout. I start with the discount

rate term:

E
[

pi
∗
]

Cov [M, y] =
E
[

Ai∗
]

F ′(K)

Rf − 1
Cov [M, y] (127)

=
E
[

Ai∗
]

F ′(K)

Rf − 1
Cov

[

Yt∗

RfY
, y

]

(128)

=
E
[

Ai∗
]

F ′(K)

Rf − 1
·
Yt∗

Rf

Cov

[

1
∑I

i=1A
iF (K)

, a
(

A + εi
∗

+ εy
)

]

(129)

=
E
[

Ai∗
]

F ′(K)

Rf − 1
·
Yt∗

Rf

·
a

F (K)
Cov

[

1
∑I

i=1A
i
,
(

A+ εi
∗

+ εy
)

]

(130)

≈
E
[

Ai∗
]

F ′(K)

Rf − 1
·
Yt∗

Rf

·
a

F (K)
Cov

[

1

IA
,
(

A+ εi
∗

+ εy
)

]

(131)

≈
E
[

Ai∗
]

F ′(K)

Rf − 1
·
Yt∗

Rf

·
a

F (K)
·
1

I
Cov

[

2

E [A]
−

A

E [A]2
,
(

A+ εi
∗

+ εy
)

]

(132)

≈
E
[

Ai∗
]

F ′(K)

Rf − 1
·
Yt∗

Rf

·
a

F (K)
·
1

I

(

−
1

E [A]2

)

Cov
[

A,
(

A+ εi
∗

+ εy
)]

(133)

=
E
[

Ai∗
]

F ′(K)

Rf − 1
·
Yt∗

Rf

·
a

F (K)
·
1

I

(

−
1

E [A]2

)

(

Cov [A,A] + Cov
[

A, εi
∗
]

+ Cov [A, εy]
)

(134)

= −β0Var [A] , (135)
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having used Cov
[

A, εi
∗
]

= Cov [A, εy] = 0 and substituted β0 as defined in equation (124).

Now I turn to the procyclical promises term:

1

Rf

Cov
[

pi
∗

, y
]

=
1

Rf

Cov

[

Ai∗F ′(K)

Rf − 1
, a
(

A+ εi
∗

+ εy
)

]

(136)

=
1

Rf

·
aF ′(K)

Rf − 1
Cov

[

Ai∗ , A+ εi
∗

+ εy
]

(137)

=
1

Rf

·
aF ′(K)

Rf − 1
Cov

[

A + εi
∗

, A+ εi
∗

+ εy
]

(138)

=
1

Rf

·
aF ′(K)

Rf − 1

(

Cov [A,A] + 2Cov
[

A, εi
∗
]

+ Cov
[

εi
∗

, εi
∗
]

+ Cov
[

εi
∗

, εy
]

)

(139)

= β1

(

Var [A] + Var
[

εi
∗
])

, (140)

having used Cov
[

A, εi
∗
]

= Cov
[

εi
∗

, εy
]

= 0 and substituted β1 as defined in equation (124).

Recall, yet again, that there is a trade-off to procyclicality. A procyclical firm makes repay-

ments in booms when marginal utility is low (the discount rate term), but can commit to

make larger repayments in these states since asset prices are high (the procyclical promises

term). The last result says that if the price of a firm’s assets moves around a lot—so the

covariance between y and pi
∗

is high—then the procyclical promises term can dominate the

discount rate term. It also points to a subtlety in the procyclical promises term: it may

not be the covariance with the aggregate price index that matters, but the covariance with

the price of the specific capital asset used in production. This suggests that there could be

a benefit to being in a volatile industry (in which the price of capital varies a lot over the

cycle).

Whereas volatile prices make the procyclical promises term relatively more important,

a volatile SDF makes the discount rate term relatively more important. Indeed, securities’

prices suggest that the SDF is volatile empirically (Hansen and Jagannathan (1991)). In

representative-agent asset pricing models, capturing this typically requires a utility func-
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tion with a lot of curvature (risk aversion). As such, it seems probable that my analysis

with log utility could understate the importance of the discount rate term.35 That said,

since I use the SDF to price capital assets, not financial assets, it is not completely clear

that this asset pricing literature is the right benchmark, especially in light of the equity

volatility puzzle.36 And log utility is a natural starting point—it reflects the very origins

of utility theory (Bernoulli (1954)), and is used even in quantitative macro models (e.g.,

Bernanke, Gertler, and Gilchrist (1996)). Hence, I think it is suitable benchmark to show

how important the procyclical promises term can be.37

35Indeed, Schwert and Strubalaev (2014) find that firms with higher asset betas are more levered (after
controlling for asset volatility). This could be because procyclical firms are able to borrow less, as would be
the case if the discount rate term were more important than the procyclical promises term. But it could
also be because they choose to borrow less, as would be the case if the discount rate term made it expensive
for procyclical firms to borrow, even if unconstrained. (Distinguishing between these possibilities is a step
beyond what I do here; I study leverage limits—debt capacity—but not yet optimal leverage choices.)

36That is, in the data, stock prices move around a lot more than consumption (see, e.g., Campbell
(2003)). Hence, my simple set-up, in which capital asset prices move in lockstep with consumption by
construction, is probably not well suited to quantitative stock pricing (the discussion in Subsection 4.10
below notwithstanding).

37Martin (2017) argues that log utility could actually be a suitable benchmark for asset pricing too.
Taking the perspective of an unconstrained investor fully invested in the market, he concludes that log
utility approximately rationalizes a fundamental relationship between options prices and realized returns.
Specifically, he calculates a bound on the market return in terms of a portfolio of equity options. He finds
that the bound is approximately tight empirically, which is the case theoretically if a representative agent
fully invested in the market has log utility.
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