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Abstract

We present a banking model in which bank debt, like banknotes and repos, circulates

as “money” in decentralized secondary markets. We find that bank debt is suscep-

tible to runs because secondary-market liquidity is subject to sudden, self-fulfilling

dry-ups. When debt fails to circulate it is redeemed on demand in a “money run.”

Even though demandable debt exposes banks to costly runs, banks still want to issue

it. To facilitate creating demandable money, banks pool investments and transform

maturity/liquidity—they endogenously do something that resembles real-world bank-

ing. This money-creation rationale for banking does not rely on diversification of bank

assets or liabilities.
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In the use of money, every one is a trader.

David Ricardo (1876)

1 Introduction

Bank debt was a major form of money in the early nineteenth-century United States. To

get beer from the barman, you would exchange private banknotes over the counter (OTC).

Banknotes were redeemable on demand and sudden redemptions—bank runs—were com-

mon.1 If you held bank debt, you could get liquidity either by trading OTC or, alternatively,

by demanding redemption from the issuing bank. But demanding redemption comes with

the risk of a run. Why would you run on a bank rather than trade its debt in the market?

In other words, why is bank debt susceptible to costly runs, even though it is tradeable?

Moreover, why do banks choose to borrow via demandable debt, even though it exposes

them to costly runs?

To give a new perspective on these questions, we focus on how banks create money by

issuing liabilities that circulate in OTC markets, like banknotes did in the nineteenth cen-

tury and much bank debt does today (see below). In the model, bank debt is susceptible to

runs because liquidity in the OTC market is subject to sudden, self-fulfilling dry-ups. When

debt fails to circulate it is redeemed on demand in a bank run, or “money run.” Such runs

were common in the nineteenth-century US, when depositors ran on banks after “the bank

note that passed freely yesterday was rejected this morning.”2 Still, banks choose to issue

1Gorton (2012b) argues that it remains a theoretical challenge to understand how these runs arise and
how they affect the design of bank liabilities that circulate as money. He says

In the U.S. under state free banking laws banks were required to back their notes with state
bonds. In the case of a bank failure—an inability to honor requests for cash from noteholders—
the state bonds would be sold (by the state government) and the note holders paid off pro rata.
Note holders were paid off pro rata, so there was no common pool problem. Yet, there was a
run on banks (banknotes and deposits) during the Panic of 1857 (p. 15).

Further, he says

Generating such [a run] event in a model seems harder when...the form of money [is such that]
each “depositor” receives a bond as collateral. There is no common pool of assets on which bank
debt holders have a claim. So, strategic considerations about coordinating with other agents
do not arise. This is a challenge for theory and raises issues concerning notions of liquidity and
collateral, and generally of the design of trading securities—private money (p. 2).

We generate such runs on bank debt in a model in which banks optimally design securities that circulate in
secondary markets.

2Treasury Secretary Howell Cobb (1858), quoted in Gorton (2012a), p. 36. Cobb goes on to suggest that
the failure of banks can cause the failure of their debt to circulate as money. We emphasize that the chain of
causation can run in the other direction, in line with Gorton’s (2012a) interpretation of bank panics in the
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demandable debt, even though it exposes them to costly runs. In our model, the reason is

that it increases their debt capacity, since the option to redeem on demand increases the

price it trades at—unlike in Jacklin (1987), demandability and tradeability are complements.

To create this circulating demandable debt, banks pool investments and transform matu-

rity/liquidity, even absent the benefits of diversification emphasized in the literature. I.e.,

just to create money, they do something that looks like real-world banking. But, to do it

effectively, they cannot hold enough liquidity to meet all redemptions at once. Hence, bank

fragility is a necessary evil. Overall, our model reveals a new type of run, a new rationale for

demandable debt, and a new raison d’être for banking, all of which are based on how bank

liabilities circulate as money in the secondary market.

Model preview. A borrower B has an investment opportunity and needs to borrow

from a creditor C0 to fund it. The model is based on two key assumptions. First, there

is a horizon mismatch, similar to that in Diamond and Dybvig (1983): C0 may be hit by

a liquidity shock before B’s investment pays off. Second, B’s debt is traded in an OTC

market, similar to those in Trejos and Wright (1995) and Duffie, Gârleanu, and Pedersen

(2005): if C0 is hit by a liquidity shock before B’s investment pays off, C0 can match with

a counterparty C1 and bargain bilaterally to trade B’s debt. Likewise, C1 may be hit by a

liquidity shock before B’s investment pays off, in which case it can match with a counterparty

C2 and bargain bilaterally to trade B’s debt, and so on. If B’s debt is demandable, then a

creditor may redeem it before the investment pays off, forcing B to liquidate inefficiently to

pay the redemption value.

Results preview. Our first main result is that B’s debt capacity is highest if it issues

tradeable, demandable debt, which we refer to as a “banknote.” In particular, as long as the

horizon mismatch is sufficiently severe, B cannot fund its investment with non-tradeable debt

(e.g., a bank loan), even if it is demandable, or with non-demandable debt (e.g., a bond),

even if it is tradeable. To see why, consider C0’s decision whether or not to lend to B. C0

knows that he may be hit by a liquidity shock before B’s investment pays off, in which case

C0 liquidates B’s debt, either by redeeming on demand or by trading in the OTC market.

If B’s debt is not tradeable (but is demandable), then C0 must redeem on demand, forcing

B into inefficient liquidation and recovering less than his initial investment. If the horizon

mismatch is severe, then this loss from early redemption is so likely that C0 is unwilling to

lend in the first place. In contrast, if B’s debt is tradeable (but is not demandable), then C0

can avoid early redemption by trading with C1 in the OTC market. However, C0’s liquidity

shock puts him in a weak bargaining position with C1: C0 has a low outside option because

National Banking Era, when “the fear of a sudden appearance of a discount on checks [i.e. on bank money]
led to bank runs” (p. 21).
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he has no way to get liquidity if trade fails. As a result, he sells B’s debt at a discounted

price, recovering less than his initial investment. If the horizon mismatch is severe, then

this loss from selling at a discount is so likely that C0 is unwilling to lend in the first place.

But if B’s debt is demandable as well as tradeable, then debt does not trade at such a high

discount in the secondary market. This is because demandability improves C0’s bargaining

position with C1. It increases his outside option, since he can redeem on demand when trade

fails. As a result, C0 can trade B’s debt at a high price following a liquidity shock. Thus, C0

is insured against liquidity shocks, making him willing to fund B’s investment. This result

contrasts with existing models of demandable debt, in which, roughly, you do not need the

option to redeem debt on demand if you can just trade it in the secondary market (e.g.,

Jacklin (1987)). Here, in contrast, you do: just the option to redeem on demand props up

the resale price of debt in the secondary market, even if the option is never exercised, and

the debt is not actually redeemed in any state of the world.

Our second main result is that banknotes are susceptible to a new kind of bank run,

which results directly from the dry-up of secondary-market liquidity. Specifically, a sudden

(but rational) change in beliefs can cause secondary-market trading to stop, leading the

creditor to redeem on demand and forcing B to liquidate inefficiently to pay the redemption

value. The belief change may be precipitated by a shock to fundamentals, in which case

the run amplifies a downturn, or by a “sunspot” unrelated to fundamentals, in which case

the run constitutes a panic in itself. Either way, the run occurs even though B has only a

single creditor—there is no static coordination problem in which multiple creditors race to

withdraw as in Diamond and Dybvig (1983); rather, there is a dynamic coordination problem

in the secondary market in which a counterparty does not accept B’s debt today because

he is worried that his future counterparty will not accept B’s debt tomorrow. Due to this

self-fulfilling liquidity dry-up, B’s creditor is suddenly unable to trade when he is hit by a

liquidity shock and, thus, he must demand redemption from B. We refer to this run as a

“money run” because it is the result of the failure of B’s debt to function as a liquid money

in the secondary market.

These first two results imply that demandability cuts both ways. Indeed, a high redemp-

tion value comes with a benefit: it helps C0 to extract a high price from C1, which makes

C0 more willing to lend. But this high price also has a cost: it increases the likelihood

that C1 chooses not to trade, which makes C0 more likely to run—C0’s option to redeem on

demand can undermine itself, putting him in such a strong bargaining position that he has

no willing counterparty. But B may still set the maximum possible redemption value (equal

to the total liquidation value of its investment). Why? Because B gets the full benefit of

cheaper borrowing, but does not bear the full cost of money runs. Hence, although financial
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fragility may be necessary—B must make its debt demandable to invest efficiently—it can

also be excessive—B makes the redemption value too high, exposing itself to more runs than

necessary.

For our third main result, we suppose that the horizon mismatch is so severe that B cannot

fund its investment, even via a banknote. In this case, direct finance is not possible. But

perhaps a form of intermediated finance is? To address this question, we consider N parallel

versions of the model—N parallel borrowers borrow from N parallel creditors who trade in N

parallel OTC markets. We assume that both borrowers’ investments and creditors’ liquidity

shocks are perfectly correlated, so there is no possibility of diversification. But we find that

the borrowers can still benefit from pooling their investments. They can issue N banknotes,

each backed by the entire pool. Why does each creditor have a claim on the liquidation

value of the pool, rather than just on a fraction 1/N of it? Because in an equilibrium in

which banknotes circulate, no one redeems on the equilibrium path; thus, if one creditor

deviates, he is the only one redeeming, and he has a first claim on all of the assets. This

option to redeem off equilibrium is enough to increase the banknotes’ secondary market

price on equilibrium, and hence to boost debt capacity. There is a money-creation rationale

for banking: borrowers form a “bank” only to create demandable debt, or “money”; they

endogenously transform liquidity and maturity, pool assets, and have dispersed creditors.

And, like a bank, they are fragile. Given the high redemption values, prices are high and

counterparties are reluctant to trade. Thus the bank is vulnerable to money runs, which can

trigger liquidation of the whole pool of investments.

These results on bank money creation do not only speak to historical bank liabilities and

the foundations of banking. They matter for contemporary policy. Today, private banks

create 97% of broad money, which includes deposits, repos, and money market mutual fund

shares—all of which are tradable, demandable, and run-prone (McLeay, Radia, and Thomas

(2014); see Subsection 5.1). Broadly, our findings stress how the structure of the secondary

market for bank debt jointly determines banks’ choice of funding instruments and finan-

cial stability. And they point to how open market operations, which prop up liquidity in

the secondary market, can have unexplored benefits, substituting for more standard central

bank policies, which provide liquidity directly to banks—a market maker of last resort could

provide banks with more funding liquidity than a lender of last resort. And this perspec-

tive casts new light on how regulatory interventions, like asset purchase programs, capital

requirements, and suspension of convertibility affect financial stability and credit supply

(Subsection 5.2).

Further results. We construct an equilibrium in which money runs happen on the

equilibrium path due to “confidence crises” that occur with sunspot probability λ. Under
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the assumption that confidence crises happen only if B’s debt is demandable, we ask: what

is the largest λ for which B still makes its debt demandable? Our model is tractable enough

to admit a closed-form expression for this number. For “reasonable” parameters, we find that

it is large (about 14%), suggesting that our model can plausibly explain why banks choose

run-prone instruments even though doing so exposes them to costly liquidation.

We also explore three extensions. (i) We show that if B can choose its investment, its

choice can be distorted toward high-liquidation-value investments, which facilitate its issuing

demandable debt. (ii) We study a version of the model with a continuum of creditors in

which debt can be rolled over as well as traded. We show that the results of our baseline

model are robust. (This setup also has the attractive feature that not every withdrawal is a

run.) (iii) We add random trading costs and show that our results generalize to this setup.

Layout. The rest of the Introduction includes a discussion of related literature. Section

2 presents the model. Section 3 analyzes benchmarks. Section 4 includes our main results.

Section 5 discusses policy, applications, and empirical content. Section 6 includes a discussion

of our assumptions and some extensions. Section 7 is the conclusion.

1.1 Related Literature

We make four main contributions to the literature.

First, we offer a new rationale for demandable debt. This adds to the literature in two

ways. (i) It complements the literature that shows how demandability can help to miti-

gate moral hazard problems (Calomiris and Kahn (1991) and Diamond and Rajan (2001a,

2001b)).3 In particular, we show how demandability can help to increase the value of bank

debt as “private money.” Thus, our model connects two of the main features of bank liabili-

ties: they circulate as money and are redeemable on demand. (ii) It provides a counterpoint

to the literature that suggests that tradeability can substitute for demandability. Notably,

Jacklin (1987) shows that, in Diamond and Dybvig’s (1983) environment, you do not need

to redeem debt on demand if you can just trade it in the secondary market.4,5 We show

3In their conclusion, Diamond and Rajan (2001a) make the link between demandability and circulating
banknotes informally, saying that

deposits are readily transferable, and liquid, because buyers of deposits have no less ability
to extract payment than do sellers of deposits. Thus, the deposits can serve as bank notes
or checks that circulate between depositors. This could explain the special role of banks in
creating inside money (p. 425).

We make this link formally in this paper.
4However, Jacklin (1987) does point out that tradeable debt can have one disadvantage relative to de-

mandable debt: investments at the initial date can be distorted in anticipation of trading later on (see also
Allen and Gale (2004), Farhi, Golosov, and Tsyvinski (2009), and Kučinskas (2017)).

5Other papers show that there may still be a role for demandability if tradeability is limited (Allen and
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that if bank debt is traded in an OTC market, like banknotes, deposits, and repos are, then

demandability complements tradeability by increasing the price at which it trades.

Second, we uncover a new kind of bank run. By connecting the fragility of money to the

fragility of banks, this adds both to the literature on coordination-based bank-run models

following Diamond and Dybvig (1983) and to the literature on search-based money models

following Kiyotaki and Wright (1989, 1993). In these money models, monetary exchange

is fragile since trade is self-fulfilling. Similarly, in the bank run models, bank deposits are

fragile since withdrawals are self-fulfilling. To the best of our knowledge, we are the first to

show that such bank fragility follows immediately from such monetary fragility6 and, hence,

coordination-based bank runs can occur even with a single depositor—i.e. without multiple

depositors racing to withdraw from a common pool of assets.7,8 This helps to explain how

runs can occur on collateral-backed debt, complementing the existing literature (see Kuong

(2015) and Martin, Skeie, and von Thadden (2014a, 2014b)). Likewise, it helps to explain

why private money is fragile, despite being backed by assets: to maximize its debt capacity,

a bank sets the redemption value so high that there is always an equilibrium with a run,

even if trading/entry costs become vanishingly small.

Third, we show that the need to create circulating demandable debt gives rise to numerous

other banking actives. This adds to the literature on the foundations of banking, connect-

ing pooling assets (e.g., Boyd and Prescott (1986), Diamond (1984), Diamond and Dybvig

(1983), and Ramakrishnan and Thakor (1984)) with money creation (e.g., Gu, Mattesini,

Monnet, and Wright (2013) and Donaldson, Piacentino, and Thakor (2018)). Notably, in

contrast to papers that emphasize how pooling helps banks meet redemptions in equilibrium

via diversification, we show that pooling improves creditors’ option to redeem off equilibrium

even absent diversification.

Fourth, by studying security design when securities are traded OTC in the secondary mar-

Gale (2004), Antinolfi and Prasad (2008), Diamond (1997), and von Thadden (1999)). In these models,
banks issue demandable debt in spite of trade in secondary markets, e.g., to overcome trading frictions, such
as limited market participation. In our model, banks issue demandable debt because of trade in secondary
markets—the option to redeem on demand improves the terms of trade in the secondary market.

6A number of papers study bank money creation independently of financial fragility (e.g., Donald-
son, Piacentino, and Thakor (2018), Gu, Mattesini, Monnet, and Wright (2013), Kiyotaki and Moore
(2001, 2002, 2005)) and some others embed Diamond–Dybvig runs in economies with private money (e.g.,
Champ, Smith, and Williamson (1996) and Sanches (2015); see also Sultanum (2018)). Relatedly, Sanches
(2016) argues that banks’ inability to commit to redeem deposits can make private money unstable.

7Our focus on runs that result from dynamic coordination failures among counterparties in the secondary
market complements models that focus on runs that result from dynamic coordination failures among de-
positors in the primary market (the dynamic analog of Diamond–Dybvig-type runs), such as He and Xiong
(2012); see also Qi (1994).

8Bond and Rai (2009) uncover another kind of run that can occur with a single depositor, or even with
no depositors whatsoever: a “borrower run.”
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ket, we add to the literature in three ways. (i) It complements the search-based money litera-

ture which analyzes which type of asset is the socially optimal medium of exchange for trade

in the secondary market (e.g., Kiyotaki and Wright (1989) and Burdett, Trejos, and Wright

(2001)). We analyze which type of contract is the privately optimal circulating instrument for

funding in the primary market. (ii) It extends results in the literature on corporate bonds that

suggest short-maturity bonds can have the benefit of high resale prices in the secondary mar-

ket, but the cost of frequent debt issuances (Bruche and Segura (2016) and He and Milbradt

(2014)). These papers restrict attention to debt contracts as in Leland and Toft (1996).

We point out that with more general contracts, the benefit can come without the cost: de-

mandable debt props up the secondary market price by giving sellers the option to redeem

on demand, an option that need never be exercised.9 (iii) It provides a counterpoint to

the literature that suggests that security design may prevent bank runs (e.g., Andolfatto,

Nosal, and Sultanum (2018), Green and Lin (2003), and Peck and Shell (2003)). This liter-

ature suggests that if the space of securities is rich enough, then bank runs do not arise in

Diamond and Dybvig’s (1983) environment. Our analysis suggests that the security designs

proposed in this literature may not prevent all kinds of bank runs. This is because, in our

environment, it is exactly the possibility of a run, i.e. the option to redeem on demand, that

makes the banknote the optimal funding instrument.

More broadly, this paper complements the related line of research that focuses on informa-

tion, rather than OTC trading frictions, in secondary-market trade (Gorton and Pennacchi

(1990), Dang, Gorton, and Hölmstrom (2015a, 2015b), Dang, Gorton, Holmström, and Or-

doñez (2017), Gorton and Ordoñez (2014), Jacklin (1989), Chemla and Hennessy (2014),

and Vanasco (2016)). This literature generally focuses on fundamental risk, and suggests

that information frictions in the secondary market lead banks to do risk transformation, and

this improves social efficiency. We focus on coordination risk, and suggest that OTC trading

frictions in the secondary market lead banks to do liquidity transformation but that this can

decrease social efficiency.

2 Model

In this section, we present the model.

9In an extension, Bruche and Segura (2016) do consider a version of puttable debt. However, they
effectively assume it is not tradeable, which shuts down the interaction of demandability and tradeability
that is critical to our results.
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2.1 Players, Dates, and Technologies

There is a single good, which is the input of production, the output of production, and the

consumption good. Time is discrete and the horizon is infinite, t ∈ {0, 1, ...}.
There are two types of players, a borrower B and infinitely many deep-pocketed creditors

C0, C1, ..., where Ct is “born” at Date t. Everyone is risk-neutral and there is no discounting.

B is penniless but has a positive-NPV investment. The investment costs c at Date 0 and

pays off y > c at a random time in the future, which arrives with intensity ρ. Thus, the

investment has NPV = y − c > 0 and expected horizon 1/ρ. B may also liquidate the

investment before it pays off; the liquidation value is ℓ < c.

B can fund its project by borrowing from a creditor. However, there is a horizon mismatch

similar to that in Diamond and Dybvig (1983): creditors may need to consume before B’s

investment pays off. Specifically, creditors consume only if they suffer “liquidity shocks,”

which arrive at independent random times with intensity θ (after which they die). Hence, a

creditor’s expected “liquidity horizon” is 1/θ.

For now, we focus on a single borrower funding a single investment with debt to a single

creditor; this helps us to distinguish the forces in our model from those in the literature.10

Later, we include multiple borrowers funding multiple investments from multiple creditors;

this allows us to show how the forces in our model give rise to something that looks like

real-world banking.

2.2 Borrowing Instruments

At Date 0, B borrows the investment cost c from its initial creditor C0 via an instrument

with terminal repayment R ≤ y, made when the investment pays off, and redemption value

r ≤ ℓ, made if the instrument is redeemed earlier. Creditors can exchange the instrument

among themselves and B must repay whichever creditor holds it. Hence, the instrument is

tradeable demandable debt, and we refer to it as a “banknote,” although it also resembles a

bank deposit or a repo. We let vt denote the Date-t value of B’s debt to a creditor not hit

by a liquidity shock.

As benchmarks, we consider instruments that may not be tradeable (so B has to repay

C0) and/or may not be demandable, but may be “long-term” (so B makes only the terminal

repayment). So, we allow B to borrow via the banknote or one of the following debt instru-

ments: (i) non-tradeable long-term debt, which we refer to as a “loan,” (ii) non-tradeable

10For example, there is no coordination problem among multiple creditors (but we show there can be a
different coordination problem with a single creditor) and there is no possibility to pool multiple investments
(but we show a new reason to pool investments in an enriched environment (Subsection 4.4)).
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demandable debt, which we refer to as a “puttable loan”; and (iii) tradeable long-term debt,

which we refer to as a “bond” (although it also resembles an equity share). These instruments

are summarized in Figure 1. They constitute all of the feasible Markovian instruments in

the sense that they are all transfers from B to the debtholder that can depend on the state of

B’s investment at Date t (but not on the date itself) and do not violate B’s limited-liability

constraints.

Figure 1: Debt Instruments

not demandable demandable

non-tradeable “loan” “puttable loan”

tradeable “bond” “banknote” (deposits or repos)

2.3 Secondary Debt Market: Entry, Bargaining, and Settlement

If B has borrowed via tradeable debt, then creditors can trade it bilaterally in an OTC

market. At each Date t, Ct is the single (potential) counterparty with whom the debtholder,

denoted by Ht, can trade B’s debt. If Ct pays an entry cost k,11 he meets Ht. Then, Ct and

Ht determine the price pt via generalized Nash bargaining. Ht’s bargaining power is denoted

by η. If Ct and Ht agree on a price, then trade is settled: Ct becomes the debtholder in

exchange for pt units of the good. Otherwise, Ht retains the debt. If the debt is demandable,

Ht can demand redemption from B or he can remain the debtholder at Date t + 1. This

sequence of entry, bargaining, and settlement is illustrated in Figure 2.12 (The entry and

bargaining stages are standard in the literature; the settlement stage is our addition to model

demandable debt.)

We let σt denote Ct’s mixed strategy if Ht is hit by a liquidity shock, so σt = 1 means

that Ct enters for sure and σt = 0 means that Ct does not enter. Thus, σt also represents

the probability that Ht finds a counterparty when hit by a liquidity shock. Observe that

we restrict attention to Ct’s strategy given Ht is hit by a liquidity shock without loss of

11This entry cost has a variety of interpretations, which we discuss in Subsection 6.1. However, our results
hold even if it is arbitrarily small (see Subsection 4.4). All that matters is that Ct bears some fixed cost
to get B’s debt from Ht, and that this cost is sunk, so cannot be shared in bargaining. It does not matter
whether Ht bears a (possibly larger) cost too.

12By separating bargaining and settlement, we zero in on tradability and demandability—Ht agrees to
trade with Ct or not at the bargaining stage and then demands redemption from B or not at the settlement
stage. This structure precludes other arrangements, e.g., in which B intermediates trades between Ht and Ct.
We discuss such “rollover” arrangements in Subsection 6.1 and modify our set-up to speak to them explicitly
in Subsection 6.3.
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Figure 2: Secondary-market Trade

Date t → Date t+ 1 →

Entry

counterparty enters

at cost k or not

Bargaining

holder and counterparty

determine price pt by

Nash bargaining

Settlement

debt traded

or demanded

generality.13

2.4 Timeline

First, B makes C0 a take-it-or-leave-it offer of a repayment and a redemption value, as

described in Subsection 2.2 above. Then, if C0 accepts, he becomes the initial debtholder

H1. The debtholder may redeem on demand or may trade in the secondary market, as

described in Subsection 2.3 above. Formally, the extensive form is as follows.

Date 0 B offers C0 a repayment R and a redemption value r.

If C0 accepts, then B invests c. C0 is the initial debtholder, H1 = C0.

Date t > 0 If B’s investment pays off: B repays R to Ht and B consumes y − R.

If B’s investment does not pay off: there is entry, bargaining, and settlement as

described in Subsection 2.3.

If there is trade, Ct becomes the new debtholder, Ht+1 = Ct.

If there is no trade, Ht either holds the debt, Ht+1 = Ht, or redeems on de-

mand, in which case B liquidates its investment, repays r to Ht, and consumes

ℓ− r.

13The reason that this is without loss of generality is that Ct would never enter if Ht were not shocked: if
Ht is not shocked, Ht and Ct are identical and there are no gains from trade, so it is never worth it to pay
the entry cost k for the opportunity to trade.
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2.5 Equilibrium

The solution concept is subgame perfect equilibrium. An equilibrium constitutes (i) the

repayments R and r, (ii) the price of debt in the secondary market pt at each date, and (iii)

the entry strategy σt of the potential counterparty Ct such that B’s choice of instrument

and Ct’s choice to enter are sequentially rational, pt is determined by Nash bargaining, and

each player’s beliefs are consistent with other players’ strategies and the outcomes of Nash

bargaining.

For most of the paper, we focus on stationary equilibria, i.e. σt ≡ σ and pt ≡ p.

3 Benchmarks

To begin, we consider three benchmark instruments, the loan, the puttable loan, and the

bond. We verify two results in the literature in our environment: (i) demandability can

increase debt capacity as in Calomiris and Kahn (1991) and (ii) tradeability can substitute

for demandability as in Jacklin (1987).

3.1 Loan

First, we consider a loan, i.e. non-tradeable long-term debt. At Date t, the value vt of the

loan with face value R can be written recursively:

vt = ρR + (1− ρ)(1− θ)vt+1. (1)

The terms are determined as follows. With probability ρ, B’s investment pays off and B

repays R. With probability (1 − ρ)θ, B’s investment does not pay off and the debtholder

Ht is hit by a liquidity shock. Since the loan is neither tradeable nor demandable, Ht gets

zero. With probability (1− ρ)(1− θ), B’s investment does not pay off and Ht is not hit by a

liquidity shock. Ht retains B’s debt at Date t+1, which has value vt+1 at Date t since there

is no discounting.14 By stationarity (vt = vt+1 ≡ v), equation (1) gives

v =
ρR

ρ+ (1− ρ)θ
. (2)

Even though B will always repay eventually, the loan’s value v is less than its face value

14Formally, the value of holding B’s debt is the Date-t expected value of B’s debt at Date t + 1, i.e. we
should write Et[vt+1] instead of vt+1. For now, we focus on deterministic equilibria. Thus, this difference is
immaterial and we omit the expectation operator for simplicity. (In Subsection 4.3, we do keep track of the
expectation operator.)
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R. The loan is discounted because, without the option to demand debt or trade it, Ht gets

nothing in the event of a liquidity shock. Hence, the discount vanishes as shocks become

unlikely, v → R as θ → 0. For θ > 0, demandability and tradeability can help to reduce the

discount, as we see next.

3.2 Puttable Loan

Now we consider a puttable loan, i.e. non-tradeable demandable debt. At Date t, the value

vt of the puttable loan can be written recursively:

vt = ρR + (1− ρ)
(

θr + (1− θ)vt+1

)

. (3)

The terms are determined as follows. With probability ρ, B’s investment pays off and B

repays R. With probability (1− ρ)θ, B’s investment does not pay off and the debtholder Ht

is hit by a liquidity shock. Since the loan is demandable, but not tradeable, Ht redeems on

demand and gets r. With probability (1 − ρ)(1 − θ), B’s investment does not pay off and

Ht is not hit by a liquidity shock. Ht retains B’s debt at Date t+ 1, which has value vt+1 at

Date t since there is no discounting. By stationarity (vt = vt+1 ≡ v), equation (3) gives

v =
ρR + (1− ρ)θr

ρ+ (1− ρ)θ
. (4)

We now compare the puttable loan’s debt capacity with the loan’s, where “debt capacity”

refers to the maximum B can borrow given limited liability. I.e. we compare equation (4)

with R = y and r = ℓ and equation (2) with R = y:

Proposition 1. (Benchmark: benefit of demandability.) If

ρy

ρ+ (1− ρ)θ
< c ≤ ρy + (1− ρ)θℓ

ρ+ (1− ρ)θ
, (5)

then B can fund itself with a puttable loan but not with a loan.

The analysis so far already points to one rationale for demandable debt. As in Calomiris

and Kahn (1991), the option to liquidate insures C0 against bad outcomes, making him more

willing to lend.15 Thus, by issuing demandable debt, B expands its debt capacity.

15In Calomiris and Kahn (1991), “bad outcomes” are associated with moral hazard problems, rather than
liquidity shocks.
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3.3 Bond

Now we consider a bond, i.e. tradeable long-term debt.(This instrument can also represent

an equity claim; debt and equity have equivalent payoffs, since the terminal payoff y is

deterministic.) At Date t, the value vt of the bond can be written recursively:

vt = ρR + (1− ρ)
(

θσtpt + (1− θ)vt+1

)

. (6)

The terms are determined as follows. With probability ρ, B’s investment pays off and B

repays R. With probability (1 − ρ)θ, B’s investment does not pay off and the debtholder

Ht is hit by a liquidity shock. Since the bond is tradeable, but not demandable, Ht gets pt

if he finds a counterparty, which happens with probability σt, and nothing otherwise. With

probability (1 − ρ)(1 − θ), B’s investment does not pay off and Ht is not hit by a liquidity

shock. Ht retains B’s debt at Date t + 1, which has value vt+1 at Date t since there is no

discounting.

To solve for the value vt, we must first find the secondary-market price of the bond pt.

Lemma 1. The secondary-market price of the bond is pt = ηvt.

The bond price splits the gains from trade between Ht and Ct in proportions η and 1 − η.

Since Ht has value zero in this case (Ht dies at the end of the period and the bond is not

demandable), the gains from trade are just the value vt of the bond to the new debtholder

Ct.

By stationarity (vt = vt+1 ≡ v and σt ≡ σ) and the preceding lemma (pt ≡ p ≡ ηv),

equation (6) gives

v =
ρR

ρ+ (1− ρ)θ(1− ησ)
. (7)

We now compare the bond’s debt capacity (equation (7) with R = y and σ = 1)16 to the

puttable loan’s (equation (4) with R = y and r = ℓ):

Proposition 2. (Benchmark: tradeability substitutes demandability.) Sup-

pose the bond circulates in equilibrium (σ = 1).17 If

ρy + (1− ρ)θℓ

ρ+ (1− ρ)θ
< c ≤ ρy

ρ+ (1− ρ)θ(1 − η)
, (8)

16The debt capacity of a tradeable instrument refers to the maximum B can borrow if it circulates, or
σ = 1. Thus, since σ is chosen by Ct, the debt capacity is an upper bound on what B can borrow. I.e. the
condition that the debt capacity exceeds c is necessary but not sufficient for B to invest.

17As we will see below (setting r = 0 in equation (13)), there is an equilibrium in which the bond circulates
as long as Ct’s entry cost k is sufficiently small.
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then B can fund itself with a bond but not with a puttable loan (or a loan).

If the bond circulates, B can borrow against the full value y whenever trading frictions

vanish (in the sense that Ht gets the bargaining power). I.e. if σ = 1, then there is no role

for demandability whenever η → 1. Hence, the analysis so far supports Jacklin’s (1987)

intuition that tradeability substitutes for demandability. If C0 is hit by a liquidity shock, he

can trade B’s debt in the market, rather than die with it. In other words, like the option

to demand, the option to trade insures C0 against bad outcomes, making him more willing

to lend. Indeed, absent trading frictions (η → 1), B can expand its debt capacity more by

issuing tradeable debt (a bond) than by issuing demandable debt (a puttable loan). However,

we will see next that with trading frictions (η < 1), there is a role for demandability, even if

debt is never redeemed in equilibrium (Proposition 3).

4 Banknote and Banking

In this section, we analyze the banknote and present our main results.

4.1 Bright Side of Demandable Debt

Now we consider a banknote, i.e. tradeable, demandable debt. At Date t, the value vt of the

banknote can be written recursively:

vt = ρR + (1− ρ)
(

θ
(

σtpt + (1− σt)r
)

+ (1− θ)vt+1

)

. (9)

The terms are determined as follows. With probability ρ, B’s investment pays off and B

repays R. With probability (1− ρ)θ, B’s investment does not pay off and the debtholder Ht

is hit by a liquidity shock. Since the banknote is both tradeable and demandable, Ht gets

pt if he finds a counterparty, which happens with probability σt, and otherwise redeems on

demand and gets r. With probability (1− ρ)(1− θ), B’s investment does not pay off and Ht

is not hit by a liquidity shock. Ht retains the banknote at Date t + 1, which has value vt+1

at Date t since there is no discounting. (NB: if r = 0 this corresponds to the value of the

bond in equation (6).)

To solve for the value vt, we must first give the secondary-market price of the banknote

pt.

Lemma 2. The secondary-market price of the banknote is pt = ηvt + (1− η)r.

The price of the banknote splits the gains between Ht and Ct in proportions η and 1 − η.

Since Ht has value r (Ht redeems on demand and gets r if he does not trade with Ct), the
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gains from trade are vt−r, the value to the new debtholder Ct minus the value to the current

debtholder Ht. The price that splits these gains is pt = r + η(vt − r) = ηvt + (1− η)r.18

By stationarity (vt = vt+1 ≡ v and σt ≡ σ) and the preceding lemma (pt ≡ p =

ηv + (1− η)r), equation (9) gives

v =
ρR + (1− ρ)θ

(

1− ησ
)

r

ρ+ (1− ρ)θ
(

1− ησ
) . (10)

We now compare the banknote’s debt capacity (v with R = y, r = ℓ, and σ = 1) to the

benchmark instruments’ (Section 3). We find that B can borrow more via a banknote than

via any other instrument.

Proposition 3. (Bright side.) Suppose the banknote circulates (σ = 1).19 If

max

{

ρy + (1− ρ)θℓ

ρ+ (1− ρ)θ
,

ρy

ρ+ (1− ρ)θ(1 − η)

}

< c ≤ ρy + (1− ρ)θ(1 − η)ℓ

ρ+ (1− ρ)θ(1− η)
, (11)

then B can fund itself only with the banknote.

Unlike the puttable loan, the banknote need not be redeemed in equilibrium. Like the bond,

it can circulate in the secondary market until maturity. But it is still more valuable than the

bond. The reason is that just the option to redeem the banknote on demand (off equilibrium)

puts the debtholder in a strong bargaining position in the secondary market, increasing its

price. Thus, given secondary market trading frictions (η < 1), demandability complements

tradability: your option to demand debt increases the price you trade at. This high price

leads to a high debt capacity: in anticipation of being able to sell at a high price in the

secondary market, C0 is willing to pay a high price in the primary market.

What kind of borrower needs to issue the banknote? To answer, we rewrite the condition

of Proposition 3. From the left term of equation (11):

1

ρ
>

1

θ
· y − c

(1− ρ)(1− η)c
. (12)

This says that creditors’ expected liquidity horizon 1/θ is small relative to B’s expected

investment horizon 1/ρ. Hence, B’s debt is a kind of inside money, since a creditor generally

does not hold it for its entire maturity; rather he holds it for a short time and then uses

it to get liquidity from another creditor—as Kiyotaki and Moore (2001) put it, “[w]henever

18This result depends on how outside options determine the division of surplus in bargaining. See Subsec-
tion 6.1 for a discussion.

19We will see below (equation (13)) that there is an equilibrium in which the banknote circulates as long
as Ct’s entry cost k is sufficiently small.
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paper circulates as a means of short-term saving (liquidity), it can properly be considered

as money, or a medium of exchange, because agents hold it not for its maturity value but

for its exchange value” (p. 1). Moreover, it implies that B intermediates between short-

horizon creditors and a long-horizon investment. Hence, B is starting to resemble a bank, as

maturity transformation is one of banks’ defining features. But this is just the first step in

our argument that B is a bank. Below, we will see that B will endogenously look a lot like

a real-world bank: it will not only transform maturity, but pool assets and engage in other

canonical banking activities as well, all to create valuable money (Subsection 4.4).

4.2 Money Runs

Having established how a banknote helps B raise funds in the primary market, we now turn

to how it trades in the secondary market, and whether it could be in fact redeemed early.

In other words, does the banknote always circulate (σ = 1), as we assumed above? To

answer, we assume that B has issued a banknote at Date 0 with terminal repayment R and

redemption value r, and we look at the equilibria of the subgames for t > 0. (We determine

R and r in equilibrium in Proposition 5.)

First, observe that B’s banknote circulates as long as σt = 1 is a best response to the

belief that Ct′ plays σt′ = 1 for all t′ > t. This is the case as long as Ct is willing to pay the

entry cost k to gain the surplus v − p given σ = 1, or

k ≤ v − p
∣

∣

∣

σ=1
=

ρ(1− η)(R− r)

ρ+ (1− ρ)θ(1 − η)
, (13)

having substituted in from Lemma 2 and equation (10).

But there may also be another equilibrium in which B’s banknote does not circulate. B’s

banknote does not circulate as long as σt = 0 is a best response to the belief that Ct′ plays

σt′ = 0 for all t′ > t. This is the case as long as Ct is not willing to pay the entry cost k to

gain the surplus v − p given σ = 0, or

k ≥ v − p
∣

∣

∣

σ=0
=

ρ(1− η)(R− r)

ρ+ (1− ρ)θ
, (14)

again having substituted in from Lemma 2 and equation (10). If r were fixed, this “bad”

equilibrium would arise only for sufficiently high k. But r is endogenous, not fixed. We

show below that it can increase if k decreases, so that this equilibrium can arise even for

arbitrarily small k > 0 (see Subsection 4.4).20

20See Rocheteau and Wright (2013) for a model in which multiple (non-steady state) equilibria arise in a
decentralized market without a fixed cost.
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Proposition 4. (Money runs.) Suppose that B borrows via a banknote with terminal

repayment R and redemption value r. If the entry cost k is such that

ρ(1− η)(R− r)

ρ+ (1− ρ)θ
≤ k ≤ ρ(1 − η)(R− r)

ρ+ (1− ρ)θ(1− η)
, (15)

then the t > 0 subgame has both an equilibrium in which B’s debt circulates (σ = 1) and

there is no early liquidation and an equilibrium in which B’s debt does not circulate (σ = 0)

and there is early liquidation. There is also a mixed equilibrium, with

σ =
1

η

(

1− ρ

(1− ρ)θk

(

(1− η)
(

R − r
)

− k
)

)

. (16)

If a counterparty Ct doubts future liquidity, i.e. he doubts that he will find a counterparty in

the future, then Ct will not enter. As a result, the debtholder Ht indeed will not find a coun-

terparty. There is a self-fulfilling dry-up of secondary-market liquidity. With demandable

debt, this has severe real effects: unable to trade, Ht redeems his debt on demand, leading

to the costly liquidation of B’s investment. In other words, a change in just the beliefs about

future liquidity leads to the failure of B’s debt as a medium of exchange in the secondary

market—the failure of B’s debt as money. As a result, there is sudden withdrawal of liquidity

from B, i.e. a bank run, or a money run.

Corollary 1. Suppose k satisfies condition (15). If Ct’s beliefs change from σt′ = 1 to

σt′ = 0 for t′ > t, the debtholder Ht “runs” on B, i.e. Ht unexpectedly demands redemption

of his debt, forcing B to liquidate its investment.

The literature has stressed bank failures resulting from shocks to fundamentals (e.g., Allen

and Gale (1998) and Gorton (1988)) or beliefs about primary market withdrawals (Diamond

and Dybvig (1983)). Friedman and Schwartz (2008) emphasize that such bank failures,

whatever their root cause, disrupt economic activity because banks create money—e.g.,

they issue banknotes—which facilitates trade. Our model also connects bank failure with

money creation. But the chain of causation goes in the opposite direction: the banknote is

redeemed only because it fails to circulate. Thus, a run can occur even with a single creditor,

who redeems his debt when he cannot trade it. It need not be the result of many creditors

racing to be the first to redeem from a common pool of assets. Thus, our model explains

runs on repos and nineteenth-century banknotes, which are individually collateralized, not

backed by common assets (see Subsection 5.1 and footnote 1).

In our model, financial fragility is a necessary evil. It is necessary because B must

issue a fragile instrument—the banknote—to fund itself (Proposition 3). And it is evil
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because money runs lead to inefficient liquidation. This contrasts with the literature on

the necessity of financial fragility, which stresses its virtue, not evil (Allen and Gale (1998),

Diamond and Rajan (2001a, 2001b)).

Although financial fragility is necessary in our model, it can still be excessive. To see

why, first observe that increasing the redemption value r makes runs “more likely”: high r

puts Ht in a strong bargaining position, increasing the price Ct pays. This makes it less

attractive for him to enter. And if Ct does not enter, Ht is unable to trade and must redeem

early—must run.

Corollary 2. Increasing the redemption value r makes the banknote less likely to circulate

in the following senses:

(i) each counterparty Ct enters only for lower entry cost k (given the strategy of other

counterparties);

(ii) σ = 1 is an equilibrium of the t > 0 subgame only for lower k;

(iii) σ = 0 is not an equilibrium of the t > 0 subgame for lower k.

Hence, demandability cuts both ways. It is both the thing that allows B to fund itself and

the thing that exposes B to runs. It increases B’s debt capacity, since it props up the price

of B’s debt (Proposition 3). But it also increases B’s liquidation risk, since it makes Ct

reluctant to enter.

Does B internalize the full cost of liquidation risk? The next result says that the answer

is no.

Lemma 3. Suppose that the probability that each counterparty enters is an increasing func-

tion f of (R − r).21 As long as the derivative f ′ is not too large, B sets the maximum

redemption value, r = ℓ.

Intuitively, there is a benefit to B of increasing the redemption value r: C0 requires less

compensation for the risk of having to sell at a discount in the secondary market. This

benefit is a cost to C0’s future counterparty, who pays a high price for the banknote. But he

21To be clear, for this result, we consider B’s best response to counterparties’ strategies σ = f(R − r),
where f depends on R− r, as motivated by Ct’s entry condition (equation (42)). For now, we do not require
these strategies to be consistent, as in equilibrium. However, we show in Subsection 6.4 below that if the
entry cost is a random variable k̃t, such strategies arise in equilibrium (and modifying the distribution of k̃t
gives us some freedom to generate different functions f).

The direct effect of increasing r is to make Ct less likely to enter, as stated in Corollary 2. We capture
this by assuming that f ′ > 0. But we should point out that increasing r can also have an indirect effect,
since it can change counterparties’ equilibrium strategies. Indeed, in some circumstances this indirect effect
can be important (e.g., in the mixed equilibrium in Proposition 4).
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is not there at Date 0, when B and C0 are bargaining. Hence, although B and C0 maximize

their joint surplus, they do not fully internalize this cost, and B continues to increase r even

when it has no social benefit (cf. Subsection 4.4, in which we model a coalition of borrowers

that makes the redemption value so large that counterparties are indifferent between entering

and staying out).

4.3 Equilibrium Runs

We now turn to characterizing an equilibrium in which B borrows via a banknote and

money runs arise on the equilibrium path. To do this, we introduce a “sunspot” coordination

variable at each date, st ∈ {0, 1}. We will interpret st = 1 as “normal times” and st = 0

as a “confidence crisis,” since the sunspot does not affect economic fundamentals, but serves

only as a way to coordinate beliefs. We assume that s0 = 1, that P [st+1 = 0 | st = 1] =: λ,

and that P [st+1 = 0 | st = 0] = 1, where we think about λ as a small number. In words: the

economy starts in normal times and a permanent22 confidence crisis occurs randomly with

small probability λ.

We now look for a Markov equilibrium, i.e. an equilibrium in which the sunspot (rather

than the whole history) is a sufficient statistic for Ct’s action:

σt =







σ1 if st = 1,

σ0 if st = 0.
(17)

We can now write the banknote’s value v as a function of st (cf. the analogous equation for

the stationary case in equation (9)):

v0 = ρR + (1− ρ)

(

θ
(

σ0p0 +
(

1− σ0
)

r
)

+ (1− θ)v0

)

, (18)

v1 = ρR + (1− ρ)

(

θ
(

σ1p1 +
(

1− σ1
)

r
)

+ (1− θ)
(

λv0 + (1− λ)v1
)

)

. (19)

The next proposition characterizes an equilibrium in which the “confidence crisis” induces a

money run.

Proposition 5. (Equilibrium with sunspot runs.) Suppose that the condition in

equation (11) is satisfied strictly. As long as λ is sufficiently small, there exists k such that

B can fund its investment only with tradeable, demandable debt (a banknote), even though

22We assume that the crisis is an absorbing state just to keep the model tractable.
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it admits a money run when st = 0. Specifically, Ct plays σt = st, and the value of the

banknote when st = 0 is

v0 =
ρR + (1− ρ)θℓ

ρ+ (1− ρ)θ
, (20)

the value of the banknote when st = 1 is

v1 =

(

ρ+ (1− ρ)
(

λ(1 + θη) + (1− λ)θ
)

)

c− (1− ρ)λθηℓ

ρ+ (1− ρ)
(

λ+ (1− λ)θ
) , (21)

the repayment R is

R = c+
(1− ρ)θ

(

ρ
(

λ+ (1− λ)(1− η)
)

+ (1− ρ)
(

λ+ (1− λ)θ(1− η)
)

)

ρ
(

ρ+ (1− ρ)
(

λ+ (1− λ)θ
)

)

(

c− ℓ
)

, (22)

and the redemption value is r = ℓ.

With these closed-form expressions, it is easy to see how the price of debt depends on

parameters.

Corollary 3. (Comparative statics.) The (net) interest rate (R− c)/c is

(i) decreasing in the liquidation value ℓ;

(ii) decreasing in debtholders’ bargaining power η;

(iii) decreasing in creditors’ liquidity horizon 1/θ;

(iv) increasing in the probability of a confidence crisis λ;

(v) increasing in the investment size c;

(vi) increasing in the investment horizon/expected maturity 1/ρ. Moreover, the term struc-

ture is upward sloping, in the sense that the yield 23 ρ(R − c)/c is also increasing in

1/ρ.

23This uncompounded yield is approximately equal to the continuously compounded yield, which you
might be more used to. For a zero-coupon instrument:

continuously compounded yield ≡ ρ log
R

c
= ρ log

(

1 +
R− c

c

)

≈ ρ
R− c

c
, (23)

for small (R − c)/c (given the Taylor expansion of log(1 + x)).
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In our model, the interest rate is compensation for liquidity risk. The results (i)–(iv) capture

that increasing ℓ and η decrease liquidity risk and increasing θ and λ increase it. (v) says

that bigger investments are effectively riskier (all else equal). The reason is that, for fixed

liquidation value ℓ, they are liquidated at a larger discount in a confidence crisis. (vi) says

that longer maturity investments demand not only higher repayments, but also higher per-

period interest rates, even though there is no discounting in preferences. The reason is that

as maturity increases both the probability that C0 has to trade at a discount before maturity

and the size of the discount he trades at increase. So illiquidity in the OTC market generates

the term structure.24

A word on welfare and a numerical example. Given its multiple equilibria, our

model does not admit a general welfare analysis. To speak to welfare, we make the following

assumption, motivated by the idea that confidence crises are likely only if there is the risk

of early redemption: confidence crises can occur if B borrows via the banknote, but not if B

borrows via the bond. We ask: if both the banknote and the bond are feasible, how small

does the probability λ of a confidence crisis have to be for B to prefer the banknote?

Proposition 6. (Confidence crisis probability.) Suppose confidence crises can occur

only if B borrows via the banknote. If the bond is feasible, B still borrows via the banknote

whenever the probability λ of a confidence crisis is below the threshold λ∗,

λ∗ =
ρ
(

ρ+ (1− ρ)θ
)

(1− η)ℓ

ρ
(

y − ℓ
)

+
(

ρ+ (1− ρ)θ
)

(1− η)(ρℓ− c)
, (24)

and borrows via the bond otherwise.

For example, if θ = 1/4, ρ = 1/10, y = 20, c = 10, ℓ = 8, and η = 3/4, B chooses the

banknote whenever λ ≤ λ∗ ≈ 14.4%.25 This points to a potentially attractive feature of

our model: unlike in many quantitative bank run models, a borrower chooses the run-prone

instrument for “reasonable” parameters even when the probability of a run is relatively high.

This seems consistent with banks’ behavior historically. In the nineteenth-century US, banks

issued banknotes despite ubiquitous runs.

24See Kozlowski (2017) for a macroeconomic model in which trading frictions generate the yield curve.
25We think about these as annual numbers. θ = 1/4, the number used in Ennis and Keister (2003), implies

creditors suffer liquidity shocks on average once every four years. ρ = 1/10 implies the investment is long-
term, taking ten years to complete on average. Given this maturity, y = 20 and c = 10 imply the investment
has annual return of 7.2%. ℓ = 8 implies the investment has a 20% liquidation discount relative to its book
value. η = 3/4 implies that debtholders get most of the surplus, but far from all of it; this is intended to
capture some degree of competition among counterparties.
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4.4 Banking

We now suppose that the horizon mismatch (equation (11)) is so severe that the borrower

cannot raise c to fund its investment, not even via a banknote. In this case, direct finance is

not possible. But perhaps a form of intermediated finance is?

To address this question, we now consider N parallel versions of our baseline model: N

identical borrowers B1, ...,BN can do parallel investments at Date 0 and N identical cred-

itors C1
t , ...,C

N
t can enter parallel markets at each Date t > 0. At Date 0, the borrowers

can issue mutualized instruments, backed by the whole pool of their investments. Redeem-

ing creditors are paid first come, first served à la Diamond and Dybvig (1983). At each

subsequent date, each version of the model proceeds exactly as in the baseline model, as

described in Section 2. Note that we assume that the parallel versions of the model are

identical in every state, i.e. investments/liquidity shocks are perfectly correlated across bor-

rowers/creditors. Thus, there are no diversification benefits from pooling loans/deposits as

in Diamond (1984)/Diamond and Dybvig (1983).

Even absent diversification, the borrowers can benefit from pooling their investments to

increase their debt capacity and raise c. The reason is that pooling allows borrowers to

increase the redemption value r of each banknote up to Nℓ, rather than just up to ℓ.

Why does each creditor have a claim on the whole liquidation value Nℓ rather than just

on a fraction 1/N of it? The answer is that in an equilibrium in which banknotes circulate,

no one redeems on the equilibrium path; thus, if one creditor deviates, he is the only one

redeeming, and can get paid up to Nℓ. Now the redemption value r can become arbitrarily

large as the number of borrowers N pooling assets increases. The option to redeem for high

r off equilibrium increases the secondary-market price of debt on equilibrium, which can, in

turn, boost debt capacity.

But that does not mean that borrowers should make r arbitrarily large. If it is too large,

banknotes do not circulate, viz. creditors do not enter if they anticipate being in a weak

bargaining position. Their entry condition (equation (13)) puts an upper bound rmax on r:

r ≤ rmax := R− ρ+ (1− ρ)θ(1 − ησ)

ρ(1− η)
k. (25)

Now, to find the debt capacity of a banknote, we substitute r = rmax, R = y, and σ = 1
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into the value of the banknote (equation (10)), to get

max v =
ρR + (1− ρ)θ

(

1− ησ
)

r

ρ+ (1− ρ)θ
(

1− ησ
)

∣

∣

∣

∣

∣

r=rmax, R=y, σ=1

(26)

= y − (1− ρ)θ

ρ
k. (27)

Given borrowers can undertake an investment only if its debt capacity exceeds its cost

(max v > c), equation (27) implies that the borrowers can undertake investments if and only

if the NPV, y− c, exceeds creditors’ total expected entry costs, (1−ρ)θ
ρ

k.26 Thus, by forming

a “bank,” the borrowers can issue banknotes to fund all (and only) investments with positive

total surplus. There is a money-creation rationale for banking:

Proposition 7. (Banking.) Suppose

N ≥ 1

ℓ

(

y − ρ+ (1− ρ)(1− η)

ρ(1− η)
k

)

. (29)

There is an equilibrium in which borrowers successfully fund all investments, raising c by

issuing a banknote to each of the Date-0 creditors, if and only if the investments have positive

total surplus, i.e. the NPV is higher than the total expected entry costs, or

y − c ≥ (1− ρ)θ

ρ
k. (30)

To fund all positive-surplus investments, borrowers have to set r so high that counterpar-

ties are indifferent between entering and staying out. This makes them especially susceptible

to runs, since an arbitrarily small change in a counterparty’s belief about others’ strategies

makes him stay out, leading to a money run. Moreover, unlike in the baseline model, a run

can occur no matter how small the entry cost k is. If k is small, the borrowers make r high,

so counterparties are still indifferent between entering and staying out (cf. equation (14)).

And now a money run has severe consequences. As in a real-world bank run, there is

mass liquidation: with r > ℓ, multiple investments need to be liquidated to redeem each

banknote. In addition to this fragility, the coalition of borrowers has other defining features

of a real-world bank.

26This expression for the expected entry costs can be understood as follows: from Date 1 onward, creditors
pay k at Date t if debtholders are shocked while investments are still underway, which occurs with probability
(1− ρ)tθ. Hence,

total expected entry costs =

∞
∑

t=1

(1− ρ)tθk =
(1− ρ)θ

ρ
k. (28)
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1. Liquidity tranformation. The bank funds illiquid assets (non-tradeable investments

that are costly to liquidate early) with liquid liabilities (circulating demandable debt).

• Issuing liquid (tradeable) liabilities gives creditors insurance against liquidity

shocks.

2. Maturity transformation. The bank funds long-term investments with short-term

(demandable) liabilities.

• Issuing demandable liabilities allows creditors to trade at a high price given liq-

uidity shocks.

3. Asset pooling. The bank pools borrowers’ investments, reusing their liquidation

value to back demandable debt.

• Issuing debt backed by a pool of assets gives creditors a high redemption value.

4. Dispersed depositors (creditors). The bank borrows from a large number of dis-

persed creditors.

• Issuing debt to many creditors gives them the option to redeem against the same

assets (hence dispersed creditors are necessary for asset pooling to help).

5. Fragility. The bank borrows via debt that is susceptible to runs, and runs force early

liquidation of multiple investments.

• Issuing run-prone debt, i.e. demandable debt with high redemption value, is nec-

essary to make the secondary market price high enough that the bank can fund

efficient investments.

In the banking equilibrium, financial fragility is not necessarily the result of monetary

fragility. With dispersed creditors, there is a common pool problem, which makes creditors

want to redeem if they believe others are going to. Thus, not all runs need be money runs;

there can be Diamond–Dybvig runs too, and these different types of runs could exacerbate

each other.

The banking equilibrium also makes it easier to apply our model to contemporary deposit

markets, in which entry costs seem likely to be small, deposits are redeemable at par, and

discounts on them are negligible:

Corollary 4. Consider the banking equilibrium in Proposition 7 in which r = rmax. As

entry costs become small, i.e. k → 0, the redemption value and secondary market price

approach the face value, i.e. r → R and p → R.
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5 Policy, Applications, and Empirical Content

We now turn to our model’s contemporary applications, policy implications, and empirical

content.

5.1 Contemporary Applications

Our model applies well to the nineteenth-century US, when you would trade banknotes

OTC to get beer from the barman, and bank runs were ubiquitous. But it applies to

contemporary economies too, since much of the money we use today—like repos, deposits,

and money market mutual fund shares—is also bank debt, and bank runs remain a major

policy concern.

Today, you exchange repos in an OTC market to get liquidity from a financial counter-

party. Even though repo contracts do not trade per se—they are formally bilateral agree-

ments, not a tradeable instruments—the collateral underlying them does.27 As Gorton and

Metrick (2010) put it,

[An] important feature of repos is that the...collateral can be “spent”...used as
collateral in another, unrelated, transaction.... This...means that there is a money
velocity associated with the collateral. In other words, the same collateral can
support multiple transactions, just as one dollar of cash can lead to a multiple of
demand deposits at a bank. The collateral is functioning like cash (p. 510).

Repos are also effectively redeemable on demand, since repo positions are typically left open

until creditors demand they be closed; other short-term debt positions (e.g., commercial

paper), in contrast, are closed unless borrowers roll them over successfully. In this sense,

repos are more like banknotes—perpetual debt that can be redeemed on demand—than

like other short-term debt. Thus, “repo runs,” salient events of the 2008–2009 financial

crisis, could be money runs. As such, our framework casts light on the puzzle of how runs

arise even though each repo is individually collateralized, and the common pool problem

necessary to generate Diamond–Dybvig runs is absent (see Gorton and Metrick (2010, 2012)

and Krishnamurthy, Nagel, and Orlov (2014)).

Bank deposits are also private money. Debit payments and bank transfers are bilateral

(OTC) transfers of bank deposits made at par (see Corollary 4). Of course, most deposits are

redeemable on demand. And runs on deposits, although no longer commonplace, do occur

27See also Donaldson, Lee, and Piacentino (2018), Donaldson and Micheler (2018), Singh (2010), and
Singh and Aitken (2010).
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in times of crisis (e.g., on Countrywide, IndyMac, and Northern Rock in the 2008 financial

crisis; see, e.g., Iyer and Puri (2012)).

Money market mutual fund shares are money like too. They are tradeable and demand-

able and vulnerable to runs (see Schmidt, Timmermann, and Wermers (2016)).28

5.2 Policy

Our analysis stresses how the structure of the secondary market for bank debt determines

banks’ debt structure and creates financial fragility. Indeed, given bank debt is traded OTC,

our results suggest that financial fragility may be a necessary evil: money runs are the cost

of the debt capacity afforded by demandable debt. However, decreasing secondary-market

trading frictions can make banks less reliant on demandable debt, decreasing the likelihood

of runs. Thus, to improve bank stability, a policy maker may be better off intervening

in the secondary market than regulating banks directly. Broadly, this suggests that open

market operations, which prop up liquidity in the secondary market, can substitute for direct

liquidity provision measures such as TAF, TSLF, TALF, etc.29 More specifically, the model

gives the following new perspectives on regulation:

1. Asset purchase guarantees. In 2008 the US Treasury opened its Temporary Guar-

antee Program, in which it promised to buy the shares of money market mutual funds

at a guaranteed price. This off-equilibrium promise to buy bank debt could elimi-

nate the “bad” equilibrium, in which counterparties do not enter the secondary market

fearing it will dry up in the future.

2. Exchanges for non-demandable debt. Centralized exchanges and clearing houses

for bank bonds, like those for stocks, could decrease trading frictions, leading banks to

issue more bonds and become less reliant on demandable debt.

3. Capital requirements. In our model, capital requirements are a double-edged sword.

They can help, by curbing banks’ incentive to use too much demandable debt (Corollary

3). But they can also hurt, by inefficiently constraining investment (Proposition 3).

4. Narrow banking. In our model, a bank can fund all worthwhile investments if it

can pool them and issue demandable debt backed by the whole pool (Proposition

7). This suggests a downside to the idea of narrow banking, which suggests that

28This empirical work notwithstanding, some still question the importance of liquidity risk in the 2008–
2009 financial crisis, stressing solvency risk. See, e.g., Thakor (2018).

29See https://www.federalreserve.gov/monetarypolicy/bst_crisisresponse.htm for a summary of such poli-
cies implemented during the financial crisis.
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real investments should be separate from deposit-taking (its financial stability benefits

notwithstanding).

5. Suspension of convertibility. Unlike in Diamond and Dybvig’s (1983) model of

bank runs, in which suspension of convertibility restores efficiency, in our model it may

have an adverse effect. Since it prevents creditors from redeeming on demand to meet

their liquidity needs, it leads to lower secondary-market debt prices and, hence, to

constrained bank borrowing and potentially to underinvestment.

5.3 Empirical Content

As mentioned above, our model is motivated by empirical observations about financial

fragility and circulating bank debt, such as banknotes, deposits, and repos. In particular,

our model offers an explanation of the following facts: (i) runs on bank debt are relatively

common, even when the debt is backed by collateral; (ii) runs are often precipitated by

the failure of debt to circulate in secondary markets; and (iii) banks choose to borrow via

demandable debt even though it exposes them to costly runs.

Our model also casts light on several other stylized facts. (i) Demandable bank instru-

ments, such as banknotes, deposits, and repos, are more likely to serve as media of exchange

than other negotiable instruments, such as bonds and shares. In the model, this is because

the option to redeem on demand props up the secondary-market price of bank debt. Thus,

if you hold a variety of instruments, you prefer to use demandable instruments to raise liq-

uidity in the secondary market and to hold long-term instruments until maturity. (ii) Our

model casts light on why bank debt is more likely to be demandable than corporate debt.

Indeed, the model suggests that banks emerge to create demandable debt, since pooling

assets allows them to increase redemption values (Proposition 7). (iii) Our model casts light

on why nineteenth-century banknotes traded at a greater discount in markets farther away

from the issuing bank: distance from the issuer made the notes harder to redeem on de-

mand, weakening note holders’ bargaining positions in the secondary market and decreasing

the price of banknotes (see Gorton (1996)). (iv) Our model generates runs even with a single

depositor, consistent with the fact that many runs are not market-wide, but rather occur in

isolation. Indeed, Krishnamurthy, Nagel, and Orlov (2014) find that repo runs occurred in

relative isolation during the financial crisis.

6 Discussion of Assumptions and Extensions

In this section, we discuss some of our key assumptions and then analyze extensions.

27



6.1 Discussion of Assumptions

Entry costs. As we stress in Subsection 4.4, money runs can arise no matter how small a

creditor’s entry cost k is. Such a small k could be realistic for some contemporary markets,

like retail markets in which consumers trade deposits for goods via debit cards. But a larger

entry cost also has natural interpretations. Historically, it could represent the physical cost

of coming to market or, alternatively, of acquiring the expertise/technology to check for

counterfeit instruments. Today, it could represent the cost of setting up a trading desk to

participate in a specific market (e.g., the repo market) or, alternatively, of establishing the

legal infrastructure to handle certain instruments (e.g., the GMRA master agreement for

repos). More generally, it could represent any cost of searching for a counterparty as in the

search money literature, of trading/transacting as in the finance literature, or of posting a

vacancy as in the labor literature. Any cost sunk before counterparties meet suffices for our

results.

Rollover. To focus on trade in the secondary market, we want to abstract from rollover in

the primary market (its practical importance notwithstanding). Indeed, the entry-bargaining-

settlement setup in Subsection 2.3 deliberately precludes strategies in which B borrows via

one-period contracts, and issues new debt to Ct to settle its existing debt with Ht at each

date: since B would have to settle first with Ct and then with Ht, this would require an

additional settlement stage. Moreover, such a one-period rollover strategy would typically

be less desirable than demandable debt in our baseline environment anyway: someone would

have to pay the cost k to enter and buy the new issue in every period, rather than to enter

and trade existing debt only in periods in which Ht is hit by a liquidity shock. More practi-

cally, secondary market trade allows the borrower to avoid floatation costs, which could be

prohibitive if borne in every period in the rollover strategy.

That said, below we include rollover in our environment (under some additional assump-

tions), and show that money runs can still occur (Subsection 6.3).

Bargaining protocol. In our model, demandability matters because the redemption

value r serves as the outside option in bargaining. Thus, security design can substitute for

market design: the borrower can adjust the terms of trade in the secondary market, choosing

r to calibrate the division of surplus between counterparties, even though the bargaining

power η is immutable.

Our results hold for bargaining protocols, like Nash bargaining, in which the outside

option determines the division of the surplus. Not every non-cooperative bargaining game

has this feature in equilibrium (Sutton (1986)). But many do. Indeed, the Nash outcome

coincides with the equilibrium of a game in which bargainers either (i) risk having the

bargaining process suddenly break down or (ii) have the ability to make take-it-or-leave-it
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offers (see, e.g., Binmore, Rubinstein, and Wolinsky (1986)). Within our model, the risk

of a breakdown could reflect the probability that a counterparty abandons the negotiation

because he is hit by a liquidity shock himself or because he finds another, more profitable

trade to execute. And the ability to make take-it-or-leave-it offers could reflect the situation

in modern “ ‘hi-tech’ markets [like the repo market] in which binding deals are made quickly

over the telephone [or Bloomberg chat]” (Binmore, Osborne, and Rubinstein (1992)), p. 190;

see Shaked (1994)).

Infinite horizon. Money runs arise due to dynamic coordination—a counterparty enters

if he believes his future counterparty will, who enters if he believes his future counterparty

will.... Thus, if it is common knowledge that any counterparty is the last one, he will never

enter, and the “good” equilibrium would unravel by backward induction. We avoid this by

assuming that the horizon is infinite, so every counterparty has a future counterparty. Indeed,

there is no date at which the banknote expires for sure; as such, tradable, demandable debt

may have more in common with perpetual debt than with short-term debt.

The infinite horizon is one way to capture the idea that each counterparty believes that

an instrument could continue for one more period with positive probability. It is the way

used in the new monetarist literature, following Kiyotaki and Wright (1989, 1993), but it

is not the only way; for example, counterparties could trade an infinite number of times in

a bounded time or be uncertain about their position in a finite trading sequence (see, e.g.,

Moinas and Pouget (2013)).

6.2 Asset Choice

What if a single borrower B chooses the type of its investment before borrowing from C0?

Do frictions in the secondary market distort its choice? Yes, toward high-liquidation-value

investments:

Proposition 8. (Excessive liquidity.) Suppose that B can choose between an invest-

ment with payoff y and liquidation value ℓ and another investment that is otherwise identical

but has lower payoff y′ < y and higher liquidation value ℓ′, where

ℓ′ > ℓ+
ρ

(1− ρ)θ(1 − η)

(

y − y′
)

. (31)

There exists an investment cost c such that in any equilibrium in which investment occurs,

B chooses the low-NPV, high-liquidation-value investment (y′, ℓ′).

Intuitively, with a high-liquidation-value investment, B can issue a high-redemption-value

banknote and borrow more. Thus, to make its debt money-like, B chooses to increase its
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liquidation value even at the expense of NPV.

6.3 Partial Rollover

We now turn to a version of the model in which counterparties are matched with debtholders

in a single market via a homogenous matching technology, unlike in Subsection 4.4 in which

they trade in parallel markets. This set-up allows us to show that money runs can occur even

if (i) there are no aggregate shocks to liquidity and (ii) B can raise money from new creditors

at the beginning of each date, thereby rolling over its debt to meet redemptions.30 Moreover,

unlike in the baseline model, not every withdrawal is a run. Rather, some debtholders redeem

at each date.

Here we do not model funding/investment, but focus on the secondary market, assuming

that banknotes are held by a unit continuum of debtholders, a fraction θ of which needs

liquidity at each date. Counterparties can enter at cost k, in which case they are matched

with debtholders via a homogenous matching function. Thus the probability σt with which

a debtholder meets a counterparty depends on the number of counterparties that enter. The

fraction θσt of debtholders that meet counterparties trade in the secondary market. The

remaining θ(1− σt) redeem for r. We assume that B issues new identical banknotes to raise

exactly enough to meet these redemptions at the beginning of each date.31

The next result says that this set-up has multiple steady states. Indeed, there is a “good

equilibrium,” in which many counterparties enter and few debtholders are left unmatched.

In this equilibrium, there are relatively few withdrawals at each date, so B chooses its

rollover strategy to raise a relatively small amount of liquidity. But there is also a “bad

equilibrium,” in which few counterparties enter and many debtholders are left unmatched.

In this equilibrium, there are more withdrawals at each date, so B has to choose a rollover

strategy to raise more liquidity. Thus, a change in beliefs can lead to a money run analogous

to that in Corollary 1: if counterparties today believe that few of their future counterparties

will enter, then few of them enter today; this leads to an unexpectedly high number of

withdrawals—a money run.

Proposition 9. (Money runs with partial rollover.) Let the matching technology

30This distinguishes our run risk from rollover risk, where we use “run risk” to mean the risk of an
unexpectedly large number of withdrawals. In contrast, we use “rollover risk” to mean the risk that B
attempts to raise new debt and fails. Below, we assume B can roll over costlessly—there is no rollover
risk—but B cannot go back to the market to meet a large number of withdrawals without some delay—there
is run risk.

31Assuming that B decides how much to raise at the beginning of the date makes runs possible and
assuming that all banknotes are identical (with face value R and redemption value r) keeps the model
stationary.
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be given by σ = µ
√
q, where q is the number of counterparties that enter and µ > 0 is a

parameter. Suppose that B borrows via banknotes from a continuum of creditors. The t > 0

subgame has two stationary equilibria, one in which many counterparties enter,

σ =
k
(

ρ+ (1− ρ)θ
)

+
√

k2
(

ρ+ (1− ρ)θ
)2 − 4µ2kρ(1− ρ)(R− r)θη(1− η)

2k(1− ρ)θη
=: σ+ (32)

—banknotes are liquid—and another in which few counterparties enter,

σ =
k
(

ρ+ (1− ρ)θ
)

−
√

k2
(

ρ+ (1− ρ)θ
)2 − 4µ2kρ(1− ρ)(R− r)θη(1− η)

2k(1− ρ)θη
=: σ− (33)

—banknotes are illiquid—as long as σ+ and σ− above are well-defined probabilities.

This result implies that money runs can occur even with no aggregate risk, no rollover risk,

and no sequential-service constraint. This affirms that money runs result only from intertem-

poral coordination in the secondary market and helps distinguish our model of bank fragility

from models of rollover risk (e.g., Acharya, Gale, and Yorulmazer (2011) and He and Xiong

(2012)).

6.4 Random Entry Costs

Now we modify the baseline model so that Ct’s entry cost is a random variable k̃t ∼ U
[

0, k̄
]

.

We find that the t > 0 subgame has multiple symmetric cut-off strategy equilibria.

Proposition 10. (Cut-off equilibria.) Define

k± =
k̄

2(1− ρ)θη



ρ+ (1− ρ)θ ±

√

(

ρ+ (1− ρ)θ
)2 − 4ρ(1− ρ)θη(1− η)

(

R− r
)

k̄



 . (34)

If k± ∈ [0, 1], then the t > 0 subgame has equilibria in which Ct enters whenever his entry

cost is below k∗ for k∗ = k− and k∗ = k+.

Given k̃t ∼ U
[

0, k̄
]

, the probability a creditor enters is k∗/k̄. In Lemma 3, we assume this

probability is an increasing function f of R − r. From equation (34), we see that this as-

sumption holds in the k−-equilibrium. Hence, this extension gives an equilibrium foundation

for our assumption. (The assumption does not hold in the k+ equilibrium. Although f is

still a function of R − r, it is decreasing, as in the mixed equilibrium; cf. the discussion in

footnote 21.)
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7 Conclusion

What is a bank? A bank is something that creates money, i.e. debt that facilitates trade

in decentralized markets. By thinking about a bank this way, we found a new rationale

for demandable debt, a new type of bank run—a “money run”—and a new explanation

for the other quintessential things banks do, such as pooling assets and maturity/liquidity

transformation. In contrast to the literature, our results suggest that financial fragility may

be a necessary evil and that regulating markets may help bank stability just as much as

regulating banks themselves.
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A Proofs

A.1 Proof of Proposition 1

For an instrument i, let max vi be an instrument’s debt capacity, i.e. its maximum value over

any R, r, and σ:

max vi := sup
{

vi
∣

∣, r ≤ ℓ , R ≤ y , σ ∈ [0, 1]
}

. (35)

So, C0 lends against instrument i only if max vi ≥ c. Hence, B can fund itself with the

puttable loan but not with the loan if and only if

max vloan < c ≤ max vputt. loan. (36)

Substituting r = ℓ and R = y into the expressions for their values in equations (2) and (4)

gives the condition in the proposition.

A.2 Proof of Lemma 1

When Ct and Ht are matched, Ht has been hit by a liquidity shock. Thus, Ct’s value of the

bond is vt and Ht’s value of the bond is zero (since Ht consumes only at Date t and the bond

is not demandable). The total surplus is thus vt, which Ct and Ht split in proportions 1− η

and η, in accordance with the Nash bargaining solution. Thus the price is pt = ηvt.

A.3 Proof of Proposition 2

The proof is analogous to that of Proposition 1. B can borrow via a bond but not with a

puttable loan if and only if

max vputt. loan < c ≤ max vbond, (37)

where max v is as defined in equation (35). Substituting r = ℓ, R = y, σ = 1 into the

expressions for their values in equations (4) and (7) gives the condition in the proposition.

A.4 Proof of Lemma 2

When Ct and Ht are matched Ht has been hit by a liquidity shock. Thus, Ct’s value of the

banknote is vt and Ht’s value of the banknote is r (since Ht consumes only at Date t, it

redeems on demand if it does not trade). The gains from trade are thus vt− r, which Ct and
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Ht split in proportions 1− η and η, in accordance with the Nash bargaining solution, i.e. pt

is such that

Ht gets η
(

vt − r
)

+ r = pt, (38)

Ct gets (1− η)
(

vt − r
)

= vt − pt, (39)

or pt = ηvt + (1− η)r.

A.5 Proof of Proposition 3

The proof is analogous to those of Proposition 1 and Proposition 2. B can borrow via a

banknote but not with a puttable loan or a bond if and only if

max
{

max vputt. loan , max vbond

}

< c ≤ max vb.note, (40)

where max v is as defined in equation (35). Substituting r = ℓ, R = y, σ = 1 into the

expressions for their values in equations (4), (7), and (10) gives the condition in the propo-

sition.

A.6 Proof of Proposition 4

For the pure equilibria, the argument is in the text (see equations (13) and (14)).

For the mixed equilibrium, Ct must be indifferent between entering and staying out,

k = v − p, or

k =
ρ(1 − η)

(

R− r
)

ρ+ (1− ρ)θ(1− ησ)
. (41)

Solving for σ gives the expression in the proposition.

A.7 Proof of Corollary 1

The result follows immediately from Proposition 4.

A.8 Proof of Corollary 2

We prove points (i)–(iii) in turn.

(i) Consider Ct’s best response given other counterparties play σ. Ct enters if

k ≤ v − p =
ρ(1− η)

(

R− r
)

ρ+ (1− ρ)θ(1− ησ)
. (42)
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The RHS above is decreasing in r (for fixed σ).

(ii) The result follows immediately from equation (13).

(iii) The result follows immediately from equation (14).

A.9 Proof of Lemma 3

We prove the result by setting up B’s maximization problem over R and r given σ = f(R−r)

and showing that B optimally sets r = ℓ. We proceed in the following steps.

(i) We write down B’s utility as a function of R and r.

(ii) We set up the constrained maximization problem to find R and r.

(iii) We show that the constraint in the maximization problem binds.

(iv) We show that the objective in the maximization problem is increasing in r given the

constraint binds.

(v) We conclude that r = ℓ, its maximum possible value.

B’s utility. Let u denote B’s expected utility, which can be written recursively as

ut = ρ(y − R) + (1− ρ)
(

θ
(

σtut+1 + (1− σt)(ℓ− r)
)

+ (1− θ)ut+1

)

(43)

The terms are determined as follows. With probability ρ, B’s investment pays off and B

repays R, keeping y − R. With probability (1 − ρ)θ, B’s investment does not payoff and

the debtholder Ht is hit by a liquidity shock. With conditional probability σt, Ht finds a

counterparty and B continues its investment, getting ut+1, since there is no discounting.

Otherwise, with conditional probability 1−σt, Ht does not find a counterparty and redeems

on demand. B must liquidate its investment and repay r, so it gets ℓ− r. With probability

(1− ρ)(1− θ), B’s investment does not pay off and Ht is not hit by a liquidity shock. Again,

B continues and gets ut+1. Given (ut = ut+1 ≡ u), substituting σt ≡ f ≡ f(R − r) in

accordance with the hypothesis of the proposition and solving for u gives

u =
ρ(y −R) + (1− ρ)θ(1− f)(ℓ− r)

ρ+ (1− ρ)θ(1− f)
. (44)

B’s maximization problem. B will choose R and r to maximize u subject to the

constraint that v ≥ c (so C0 lends). Substituting for u form equation (44) and for v from
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equation (10) with σ = f(R− r), this reads:















maximize
ρ
(

y − R) + (1− ρ)θ(1 − f)(ℓ− r)

ρ+ (1− ρ)θ(1− f)

s.t.
ρR + (1− ρ)θ(1− ηf)r

ρ+ (1− ρ)θ(1− ηf)
≥ c.

(45)

Constraint binds. To show that the constraint binds, we show that decreasing R (i)

increases the objective and (ii) tightens the constraint:

(i) By differentiation, ∂u
∂R

< 0 as long as

f ′

[

(1− ρ)θ
(

y − R− (ℓ− r)
)

]

< ρ+ (1− ρ)θ(1− f) (46)

If the term in square brackets is negative, this is always satisfied, since f ′ > 0. If it

is positive, then it is satisfied as long as f ′ is sufficiently small, which is required by

hypothesis.

(ii) By differentiation, ∂v
∂R

> 0 as long as

f ′ > −ρ+ (1− ρ)θ(1 − ηf)

(1− ρ)θη(R − r)
. (47)

This is always satisfied given f ′ > 0.

Optimal r. To show that r = ℓ, we show that u is increasing in r given the constraint

binds. To see this, compute the total derivative of u = u
(

r, f(R − r), R(r)
)

“along the

constraint”:

du

dr
=

∂u

∂r
+

∂u

∂f

df

dr
+

∂u

∂R

dR

dr
(48)

=
∂u

∂r
+

∂u

∂f
f ′

(

dR

dr
− 1

)

+
∂u

∂R

dR

dr
, (49)

where dR/dr comes from differentiating the constraint (given it binds) and the partial deriva-
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tives follow from direct computation:

dR

dr
= −

θ(1 − ρ)
(

(1− ηf)(ρ+ θ(1− ρ)(1− ηf))− ηρ(R− r)f ′

)

ρ (ρ+ θ(1− ρ)(1− ηf) + ηθ(1− ρ)(R− r)f ′)
, (50)

∂u

∂R
= − ρ

ρ+ (1− ρ)θ(1− f)
, (51)

∂u

∂f
=

(y − R− (ℓ− r))θ(1− ρ)ρ

(ρ+ (1− ρ)θ(1 − f))2
, (52)

∂u

∂r
= − (1− ρ)θ(1 − f)

ρ+ (1− ρ)θ(1− f)
. (53)

Substituting equations (50), (51), (52), and (53) into equation (49) and manipulating, we

see that the derivative du/dr > 0 as long as so long as

[

(

ρ+ θ(1− ρ)(1− ηf)
)2(

y − ℓ− (R− r)
)

+ η
(

ρ+ (1− ρ)θ(1− f
)2(

R− r
)

]

f ′ <

< (1− η)f
(

ρ+ (1− ρ)θ(1− ηf)
)(

ρ+ (1− ρ)θ(1− f)
)

.
(54)

If the term in square brackets is negative, this is always satisfied, since f ′ > 0. If it is

positive, then it is satisfied as long as f ′ is small, which is required by hypothesis.

A.10 Proof of Proposition 5

We first solve for the values v0 and v1 in terms of r and R given the strategies σ0 = 0 and

σ1 = 1. We then show that these strategies are indeed best responses (for some k). Finally,

we argue that r = ℓ and compute the repayment R. Finally, we substitute r and R back

into the values to get the expressions in the proposition. Then, the fact that B can borrow

via the banknote and only via the banknote for λ sufficiently small follows immediately from

Proposition 3 and the continuity of v1 in λ.

Values. From equation (18) with σ0 = 0, we have immediately that

v0 =
ρR + (1− ρ)θr

ρ+ (1− ρ)θ
(55)

(this is just the value of the puttable loan in equation (4)). From Lemma 2 (the logic of

which is not affected by the presence of sunspots), we have the prices

p0 = ηv0 + (1− η)r, (56)

p1 = η
(

λv0 + (1− λ)v1
)

+ (1− η)r. (57)
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Thus, equation (19) with σ1 = 1 reads

v1 = ρR + (1− ρ)
(

θ
(

η
(

λv0 + (1− λ)v1
)

+ (1− η)r
)

+ (1− θ)
(

λv0 + (1− λ)v1
))

, (58)

so

v1 =
ρR + (1− ρ)

(

λ
(

1− θ(1− η)
)

v0 + θ(1− η)r
)

ρ+ (1− ρ)
(

λ
(

1− θ(1− η)
)

+ θ(1− η)
) . (59)

Best responses. σ1 = 1 and σ0 = 0 are best responses if

v0 − p0 ≤ k ≤ v1 − p1 (60)

or

v0 − ηv0 − (1− η)r ≤ k ≤ v1 − η
(

λv0 + (1− λ)v1
)

− (1− η)r. (61)

This is satisfied for some k as long as v1 ≥ v0, which is the case as long as R ≥ r, which

must be the case since R > c > ℓ ≥ r.

Repayments. r = ℓ since v1 is (uniformly) increasing in r but, for λ small, B’s payoff

does not depend on r (directly).32,33

Now, the repayment R is determined by solving

c = λv0 + (1− λ)v1. (62)

Substituting in for v0 and v1 from equations (55) and (59) and solving for R, we find

R = c+
(1− ρ)θ

(

ρ
(

λ+ (1− λ)(1− η)
)

+ (1− ρ)
(

λ+ (1− λ)θ(1− η)
)

)

ρ
(

ρ+ (1− ρ)
(

λ+ (1− λ)θ
)

)

(

c− ℓ
)

, (63)

as expressed in the proposition.

32Intuitively, if you are “close” to the good equilibrium (so the banknote almost always circulates), you get
all of the benefit increasing r (via the increased price), but almost none of the cost (via the increased payout
given early redemption). Formally, ∂v

∂r
> 0 uniformly in λ, but ∂u

∂r
→ 0 as λ → 0 (see the expressions for B’s

payoffs in equations (69) and (70)).
33Note that we are calculating the optimal values of R and r as if they do not affect the equilibria of

the t > 0 subgames. I.e. counterparties enter in state st = 1 and not in state st = 0, as described in the
proposition, off the equilibrium path as well as on it. However, other equilibria are possible too, supported
by different off-equilibrium behavior.
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We can then use the expressions for R and v0 above and substitute them into v1 to find

v1 =

(

ρ+ (1− ρ)
(

λ(1 + θη) + (1− λ)θ
)

)

c− (1− ρ)λθηℓ

ρ+ (1− ρ)
(

λ + (1− λ)θ
) , (64)

as expressed in the proposition.

A.11 Proof of Corollary 3

The results follow directly from differentiation given the expression for R in equation (22).

A.12 Proof of Proposition 6

We first solve for B’s Date-0 utility if it issues a bond, which we label u|bond. Then we solve

for B’s utility if it issues a banknote, which we label u|b.note. Then we show u|b.note ≥ u|bond

whenever λ ≤ λ∗.

Bond. Suppose B issues a bond. By assumption, the bond always circulates. Hence, B

never liquidates early and eventually gets y and repays R. Since there is no discounting, B’s

utility is u = y−R. Since the bond is like a banknote that always circulates with redemption

value zero, R is given by equation (22) with λ = 0 and ℓ replaced by zero (since r = 0 instead

of r = ℓ). We have

u = y − ρ+ (1− ρ)θ(1− η)

ρ
c =: u

∣

∣

bond
. (65)

Banknote. Suppose B issues a banknote. Denote B’s utility in state st by ust. First,

consider st = 0. u0 solves

u0 = ρ(y − R) + (1− ρ)
(

θ(ℓ− r) + (1− θ)u0
)

, (66)

where the terms are determined as follows. With probability ρ, B’s investment pays off and

B repays R, keeping y − R. With probability (1 − ρ)θ, B’s investment does not payoff and

the debtholder Ht is hit by a liquidity shock. Since st = 0, σt = 0 and Ht redeems on

demand and B must liquidate its investment and repay r, getting r − ℓ. With probability

(1− ρ)(1− θ), B’s investment does not pay off and Ht is not hit by a liquidity shock. B gets

u0, since st+1 = 0 given P [st+1 = 0 | st = 0] = 1. Solving for u0 with r = ℓ gives

u0 =
ρ(y − R)

ρ+ (1− ρ)θ
. (67)
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Now, consider st = 1. u1 solves

u1 = ρ(y −R) + (1− ρ)
(

λu0 + (1− λ)u1
)

, (68)

where the terms are determined as follows. With probability ρ, B’s investment pays off and

B repays R, keeping y −R. With probability 1− ρ, B’s investment does not payoff. In this

case, B continues its investment to the next date (it does not matter if Ht is shocked, since

B’s debt always circulates given st = 1). Hence, with conditional probability λ, st+1 = 0

and B gets u0 and, with conditional probability 1 − λ, st+1 = 1 and B gets u1. Solving for

u1 gives

u1 =
ρ(y −R) + (1− ρ)λu0

ρ+ (1− ρ)λ
. (69)

B’s Date-0 utility is thus

ub.note = λu0 + (1− λ)u1. (70)

Substituting for u0, u1, and R from equations (67), (69), and (22) and differentiating imme-

diately gives the following lemma, which is useful below.

Lemma 4. u
∣

∣

b.note
is continuously decreasing in λ.

Proof. Direct computation gives

∂

∂λ

(

u
∣

∣

b.note

)

= −
(1− ρ)θ

(

ρy −
(

ρ+ (1− ρ)θ(1 − η)
)

c+ ρη(c− ℓ) + (1− ρ)θ(1− η)ℓ
)

(

ρ+ (1− ρ)θ
)(

λ+ (1− λ)ρ
)2 .

(71)

This is negative since each term in the numerator is positive, given ρy−(ρ+(1−ρ)θ(1−η))c ≥
0 by the assumption that the bond is feasible (equation (8)).

Comparison. B prefers to issue a banknote than a bond whenever u|b.note ≥ u|bond.

From the expressions above, equality holds if

λ∗ =
ρ
(

ρ+ (1− ρ)θ
)

(1− η)ℓ

ρ(y − ℓ) +
(

ρ+ (1− ρ)θ
)

(1− η)(ρℓ− c)
. (72)

And given u|bond does not depend on λ and u|b.note is increasing in λ (Lemma 4), u|b.note ≥
u|bond exactly when λ ≤ λ∗.
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A.13 Proof of Proposition 7

Most of the argument is in the text preceding the proposition. It remains only to show that

creditors’ entry condition puts a tighter bound on the redemption value than the liquidation

value does, i.e. r ≤ rmax is a tighter constraint than r ≤ Nℓ. And, indeed, the assumption

in equation (29) says exactly that rmax ≤ Nℓ.

A.14 Proof of Corollary 4

The result follows immediately from the expressions for rmax in equation (25) and p in Lemma

2 (given the expression for v in equation (10)).

A.15 Proof of Proposition 8

By Proposition 3, B can invest in (y′, ℓ′) but not in (y, ℓ) if and only if

max vb.note

∣

∣

(y,ℓ)
< c ≤ max vb.note

∣

∣

(y′,ℓ′)
, (73)

where max v is as defined in equation (35). Substituting for R, r and σ in the value of the

banknote (equation (10)), this says that

ρy + (1− ρ)θ(1− η)ℓ

ρ+ (1− ρ)θ(1− η)
< c ≤ ρy′ + (1− ρ)θ(1− η)ℓ′

ρ+ (1− ρ)θ(1 − η)
. (74)

There exists c satisfying the above inequalities whenever the left-most term is less than the

right-most term. This reduces to the condition in the proposition (equation (31)).

A.16 Proof of Proposition 9

Observe first that the value of the banknote is given by the same expression as in the baseline

model (equation (10)). But now an interior value of σ is determined by counterparties’ entry

condition. Recall that the matching function is homogenous, so each counterparty is matched

with a debtholder with probability σ/q. Counterparties’ entry condition is thus

σ

q

(

v − p
)

≥ k, (75)

where q represents the steady-state mass of counterparties entering at each date. Since

each counterparty is small, the inequality above will bind. Substituting in for v and p =
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ηv + (1− η)r, we have

σ

q

(

ρ(1− η)
(

R− r
)

ρ+ (1− ρ)θ(1 − ησ)

)

= k. (76)

With σ = µ
√
q, this can be re-written as

µk(1− ρ)θηq − k
(

ρ+ (1− ρ)θ
)√

q + µρ(1− η)(R− r) = 0. (77)

This is a quadratic equation in
√
q. It has the two solutions, i.e. there are two steady states,

√
q
±
=

k
(

ρ+ (1− ρ)θ
)

±
√

k2
(

ρ+ (1− ρ)θ
)2 − 4µ2kρ(1− ρ)(R− r)θη(1− η)

2µk(1− ρ)θη
. (78)

Substituting σ± = µ
√
q± gives the expressions in the proposition.

A.17 Proof of Proposition 10

Given k̃t ∼ U
[

0, k̄
]

, we can replace σ in Ct’s entry condition (equation (42)) by P [σt = 1] =

k∗/k̄, . Ct must be indifferent at the cut-off k∗:

k∗ =
ρ(1− η)

(

R− r
)

ρ+ (1− ρ)θ
(

1− ηk∗/k̄
) . (79)

Rearranging gives a quadratic equation which has the two solutions in equation (34), as long

as they are well defined, i.e. k± ∈ [0, 1], as required by the proposition.

42



B Table of Notations

Players and Indices

t time index
B borrower or “bank”
Ct (potential) creditor/counterparty at Date t
Ht debtholder at Date t

Technologies and Preferences

y payoff of B’s investment
c cost of B’s investment
ℓ liquidation value of B’s investment
ρ probability B’s investment pays off each date
θ probability Ct is hit by liquidity shock at each date
u B’s utility (used only in the Appendix)

Prices, Values, and Strategies

R terminal repayment (face value of debt)
r redemption value
vt value of B’s debt to a creditor at Date t
pt secondary-market price of B’s debt at Date t
σt mixed strategy of counterparty Ct

Other Variables

st sunspot at Date t (Subsection 4.3)
λ P [st+1 = 0|st = 1], “confidence crisis” probability (Subsection 4.3)
max v debt capacity/maximum value of an instrument (equation (35))
rmax maximum redemption value s.t. Ct enters (equation (25))
µ matching parameter in Subsection 6.3
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